[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2. BFD Front End

2.1 typedef bfd  
2.2 Error reporting  
2.3 Miscellaneous  
2.4 Memory Usage  
2.5 Initialization  
2.6 Sections  
2.7 Symbols  
2.8 Archives  
2.9 File formats  
2.10 Relocations  
2.11 Core files  
2.12 Targets  
2.13 Architectures  
2.14 Opening and closing BFDs  
2.15 Implementation details  
2.16 File caching  
2.17 Linker Functions  
2.18 Hash Tables  


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.1 typedef bfd

A BFD has type bfd; objects of this type are the cornerstone of any application using BFD. Using BFD consists of making references though the BFD and to data in the BFD.

Here is the structure that defines the type bfd. It contains the major data about the file and pointers to the rest of the data.

 
enum bfd_direction
  {
    no_direction = 0,
    read_direction = 1,
    write_direction = 2,
    both_direction = 3
  };

struct bfd
{
  /* A unique identifier of the BFD  */
  unsigned int id;

  /* The filename the application opened the BFD with.  */
  const char *filename;

  /* A pointer to the target jump table.  */
  const struct bfd_target *xvec;

  /* The IOSTREAM, and corresponding IO vector that provide access
     to the file backing the BFD.  */
  void *iostream;
  const struct bfd_iovec *iovec;

  /* The caching routines use these to maintain a
     least-recently-used list of BFDs.  */
  struct bfd *lru_prev, *lru_next;

  /* When a file is closed by the caching routines, BFD retains
     state information on the file here...  */
  ufile_ptr where;

  /* File modified time, if mtime_set is TRUE.  */
  long mtime;

  /* Reserved for an unimplemented file locking extension.  */
  int ifd;

  /* The format which belongs to the BFD. (object, core, etc.)  */
  bfd_format format;

  /* The direction with which the BFD was opened.  */
  enum bfd_direction direction;

  /* Format_specific flags.  */
  flagword flags;

  /* Values that may appear in the flags field of a BFD.  These also
     appear in the object_flags field of the bfd_target structure, where
     they indicate the set of flags used by that backend (not all flags
     are meaningful for all object file formats) (FIXME: at the moment,
     the object_flags values have mostly just been copied from backend
     to another, and are not necessarily correct).  */

#define BFD_NO_FLAGS   0x00

  /* BFD contains relocation entries.  */
#define HAS_RELOC      0x01

  /* BFD is directly executable.  */
#define EXEC_P         0x02

  /* BFD has line number information (basically used for F_LNNO in a
     COFF header).  */
#define HAS_LINENO     0x04

  /* BFD has debugging information.  */
#define HAS_DEBUG      0x08

  /* BFD has symbols.  */
#define HAS_SYMS       0x10

  /* BFD has local symbols (basically used for F_LSYMS in a COFF
     header).  */
#define HAS_LOCALS     0x20

  /* BFD is a dynamic object.  */
#define DYNAMIC        0x40

  /* Text section is write protected (if D_PAGED is not set, this is
     like an a.out NMAGIC file) (the linker sets this by default, but
     clears it for -r or -N).  */
#define WP_TEXT        0x80

  /* BFD is dynamically paged (this is like an a.out ZMAGIC file) (the
     linker sets this by default, but clears it for -r or -n or -N).  */
#define D_PAGED        0x100

  /* BFD is relaxable (this means that bfd_relax_section may be able to
     do something) (sometimes bfd_relax_section can do something even if
     this is not set).  */
#define BFD_IS_RELAXABLE 0x200

  /* This may be set before writing out a BFD to request using a
     traditional format.  For example, this is used to request that when
     writing out an a.out object the symbols not be hashed to eliminate
     duplicates.  */
#define BFD_TRADITIONAL_FORMAT 0x400

  /* This flag indicates that the BFD contents are actually cached
     in memory.  If this is set, iostream points to a bfd_in_memory
     struct.  */
#define BFD_IN_MEMORY 0x800

  /* The sections in this BFD specify a memory page.  */
#define HAS_LOAD_PAGE 0x1000

  /* This BFD has been created by the linker and doesn't correspond
     to any input file.  */
#define BFD_LINKER_CREATED 0x2000

  /* This may be set before writing out a BFD to request that it
     be written using values for UIDs, GIDs, timestamps, etc. that
     will be consistent from run to run.  */
#define BFD_DETERMINISTIC_OUTPUT 0x4000

  /* Compress sections in this BFD.  */
#define BFD_COMPRESS 0x8000

  /* Decompress sections in this BFD.  */
#define BFD_DECOMPRESS 0x10000

  /* BFD is a dummy, for plugins.  */
#define BFD_PLUGIN 0x20000

  /* Flags bits to be saved in bfd_preserve_save.  */
#define BFD_FLAGS_SAVED \
  (BFD_IN_MEMORY | BFD_COMPRESS | BFD_DECOMPRESS | BFD_PLUGIN)

  /* Flags bits which are for BFD use only.  */
#define BFD_FLAGS_FOR_BFD_USE_MASK \
  (BFD_IN_MEMORY | BFD_COMPRESS | BFD_DECOMPRESS | BFD_LINKER_CREATED \
   | BFD_PLUGIN | BFD_TRADITIONAL_FORMAT | BFD_DETERMINISTIC_OUTPUT)

  /* Currently my_archive is tested before adding origin to
     anything. I believe that this can become always an add of
     origin, with origin set to 0 for non archive files.  */
  ufile_ptr origin;

  /* The origin in the archive of the proxy entry.  This will
     normally be the same as origin, except for thin archives,
     when it will contain the current offset of the proxy in the
     thin archive rather than the offset of the bfd in its actual
     container.  */
  ufile_ptr proxy_origin;

  /* A hash table for section names.  */
  struct bfd_hash_table section_htab;

  /* Pointer to linked list of sections.  */
  struct bfd_section *sections;

  /* The last section on the section list.  */
  struct bfd_section *section_last;

  /* The number of sections.  */
  unsigned int section_count;

  /* Stuff only useful for object files:
     The start address.  */
  bfd_vma start_address;

  /* Used for input and output.  */
  unsigned int symcount;

  /* Symbol table for output BFD (with symcount entries).
     Also used by the linker to cache input BFD symbols.  */
  struct bfd_symbol  **outsymbols;

  /* Used for slurped dynamic symbol tables.  */
  unsigned int dynsymcount;

  /* Pointer to structure which contains architecture information.  */
  const struct bfd_arch_info *arch_info;

  /* Stuff only useful for archives.  */
  void *arelt_data;
  struct bfd *my_archive;      /* The containing archive BFD.  */
  struct bfd *archive_next;    /* The next BFD in the archive.  */
  struct bfd *archive_head;    /* The first BFD in the archive.  */
  struct bfd *nested_archives; /* List of nested archive in a flattened
                                  thin archive.  */

  /* A chain of BFD structures involved in a link.  */
  struct bfd *link_next;

  /* A field used by _bfd_generic_link_add_archive_symbols.  This will
     be used only for archive elements.  */
  int archive_pass;

  /* Used by the back end to hold private data.  */
  union
    {
      struct aout_data_struct *aout_data;
      struct artdata *aout_ar_data;
      struct _oasys_data *oasys_obj_data;
      struct _oasys_ar_data *oasys_ar_data;
      struct coff_tdata *coff_obj_data;
      struct pe_tdata *pe_obj_data;
      struct xcoff_tdata *xcoff_obj_data;
      struct ecoff_tdata *ecoff_obj_data;
      struct ieee_data_struct *ieee_data;
      struct ieee_ar_data_struct *ieee_ar_data;
      struct srec_data_struct *srec_data;
      struct verilog_data_struct *verilog_data;
      struct ihex_data_struct *ihex_data;
      struct tekhex_data_struct *tekhex_data;
      struct elf_obj_tdata *elf_obj_data;
      struct nlm_obj_tdata *nlm_obj_data;
      struct bout_data_struct *bout_data;
      struct mmo_data_struct *mmo_data;
      struct sun_core_struct *sun_core_data;
      struct sco5_core_struct *sco5_core_data;
      struct trad_core_struct *trad_core_data;
      struct som_data_struct *som_data;
      struct hpux_core_struct *hpux_core_data;
      struct hppabsd_core_struct *hppabsd_core_data;
      struct sgi_core_struct *sgi_core_data;
      struct lynx_core_struct *lynx_core_data;
      struct osf_core_struct *osf_core_data;
      struct cisco_core_struct *cisco_core_data;
      struct versados_data_struct *versados_data;
      struct netbsd_core_struct *netbsd_core_data;
      struct mach_o_data_struct *mach_o_data;
      struct mach_o_fat_data_struct *mach_o_fat_data;
      struct plugin_data_struct *plugin_data;
      struct bfd_pef_data_struct *pef_data;
      struct bfd_pef_xlib_data_struct *pef_xlib_data;
      struct bfd_sym_data_struct *sym_data;
      void *any;
    }
  tdata;

  /* Used by the application to hold private data.  */
  void *usrdata;

  /* Where all the allocated stuff under this BFD goes.  This is a
     struct objalloc *, but we use void * to avoid requiring the inclusion
     of objalloc.h.  */
  void *memory;

  /* Is the file descriptor being cached?  That is, can it be closed as
     needed, and re-opened when accessed later?  */
  unsigned int cacheable : 1;

  /* Marks whether there was a default target specified when the
     BFD was opened. This is used to select which matching algorithm
     to use to choose the back end.  */
  unsigned int target_defaulted : 1;

  /* ... and here: (``once'' means at least once).  */
  unsigned int opened_once : 1;

  /* Set if we have a locally maintained mtime value, rather than
     getting it from the file each time.  */
  unsigned int mtime_set : 1;

  /* Flag set if symbols from this BFD should not be exported.  */
  unsigned int no_export : 1;

  /* Remember when output has begun, to stop strange things
     from happening.  */
  unsigned int output_has_begun : 1;

  /* Have archive map.  */
  unsigned int has_armap : 1;

  /* Set if this is a thin archive.  */
  unsigned int is_thin_archive : 1;

  /* Set if only required symbols should be added in the link hash table for
     this object.  Used by VMS linkers.  */
  unsigned int selective_search : 1;
};


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2 Error reporting

Most BFD functions return nonzero on success (check their individual documentation for precise semantics). On an error, they call bfd_set_error to set an error condition that callers can check by calling bfd_get_error. If that returns bfd_error_system_call, then check errno.

The easiest way to report a BFD error to the user is to use bfd_perror.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.1 Type bfd_error_type

The values returned by bfd_get_error are defined by the enumerated type bfd_error_type.

 
typedef enum bfd_error
{
  bfd_error_no_error = 0,
  bfd_error_system_call,
  bfd_error_invalid_target,
  bfd_error_wrong_format,
  bfd_error_wrong_object_format,
  bfd_error_invalid_operation,
  bfd_error_no_memory,
  bfd_error_no_symbols,
  bfd_error_no_armap,
  bfd_error_no_more_archived_files,
  bfd_error_malformed_archive,
  bfd_error_missing_dso,
  bfd_error_file_not_recognized,
  bfd_error_file_ambiguously_recognized,
  bfd_error_no_contents,
  bfd_error_nonrepresentable_section,
  bfd_error_no_debug_section,
  bfd_error_bad_value,
  bfd_error_file_truncated,
  bfd_error_file_too_big,
  bfd_error_on_input,
  bfd_error_invalid_error_code
}
bfd_error_type;


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.1.1 bfd_get_error

Synopsis
 
bfd_error_type bfd_get_error (void);
Description
Return the current BFD error condition.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.1.2 bfd_set_error

Synopsis
 
void bfd_set_error (bfd_error_type error_tag, ...);
Description
Set the BFD error condition to be error_tag. If error_tag is bfd_error_on_input, then this function takes two more parameters, the input bfd where the error occurred, and the bfd_error_type error.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.1.3 bfd_errmsg

Synopsis
 
const char *bfd_errmsg (bfd_error_type error_tag);
Description
Return a string describing the error error_tag, or the system error if error_tag is bfd_error_system_call.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.1.4 bfd_perror

Synopsis
 
void bfd_perror (const char *message);
Description
Print to the standard error stream a string describing the last BFD error that occurred, or the last system error if the last BFD error was a system call failure. If message is non-NULL and non-empty, the error string printed is preceded by message, a colon, and a space. It is followed by a newline.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.2 BFD error handler

Some BFD functions want to print messages describing the problem. They call a BFD error handler function. This function may be overridden by the program.

The BFD error handler acts like printf.

 
typedef void (*bfd_error_handler_type) (const char *, ...);


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.2.1 bfd_set_error_handler

Synopsis
 
bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);
Description
Set the BFD error handler function. Returns the previous function.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.2.2 bfd_set_error_program_name

Synopsis
 
void bfd_set_error_program_name (const char *);
Description
Set the program name to use when printing a BFD error. This is printed before the error message followed by a colon and space. The string must not be changed after it is passed to this function.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.2.3 bfd_get_error_handler

Synopsis
 
bfd_error_handler_type bfd_get_error_handler (void);
Description
Return the BFD error handler function.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.3 BFD assert handler

If BFD finds an internal inconsistency, the bfd assert handler is called with information on the BFD version, BFD source file and line. If this happens, most programs linked against BFD are expected to want to exit with an error, or mark the current BFD operation as failed, so it is recommended to override the default handler, which just calls _bfd_error_handler and continues.

 
typedef void (*bfd_assert_handler_type) (const char *bfd_formatmsg,
                                         const char *bfd_version,
                                         const char *bfd_file,
                                         int bfd_line);


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.3.1 bfd_set_assert_handler

Synopsis
 
bfd_assert_handler_type bfd_set_assert_handler (bfd_assert_handler_type);
Description
Set the BFD assert handler function. Returns the previous function.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.2.3.2 bfd_get_assert_handler

Synopsis
 
bfd_assert_handler_type bfd_get_assert_handler (void);
Description
Return the BFD assert handler function.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3 Miscellaneous


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1 Miscellaneous functions


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.1 bfd_get_reloc_upper_bound

Synopsis
 
long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);
Description
Return the number of bytes required to store the relocation information associated with section sect attached to bfd abfd. If an error occurs, return -1.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.2 bfd_canonicalize_reloc

Synopsis
 
long bfd_canonicalize_reloc
   (bfd *abfd, asection *sec, arelent **loc, asymbol **syms);
Description
Call the back end associated with the open BFD abfd and translate the external form of the relocation information attached to sec into the internal canonical form. Place the table into memory at loc, which has been preallocated, usually by a call to bfd_get_reloc_upper_bound. Returns the number of relocs, or -1 on error.

The syms table is also needed for horrible internal magic reasons.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.3 bfd_set_reloc

Synopsis
 
void bfd_set_reloc
   (bfd *abfd, asection *sec, arelent **rel, unsigned int count);
Description
Set the relocation pointer and count within section sec to the values rel and count. The argument abfd is ignored.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.4 bfd_set_file_flags

Synopsis
 
bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags);
Description
Set the flag word in the BFD abfd to the value flags.

Possible errors are:


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.5 bfd_get_arch_size

Synopsis
 
int bfd_get_arch_size (bfd *abfd);
Description
Returns the architecture address size, in bits, as determined by the object file's format. For ELF, this information is included in the header.

Returns
Returns the arch size in bits if known, -1 otherwise.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.6 bfd_get_sign_extend_vma

Synopsis
 
int bfd_get_sign_extend_vma (bfd *abfd);
Description
Indicates if the target architecture "naturally" sign extends an address. Some architectures implicitly sign extend address values when they are converted to types larger than the size of an address. For instance, bfd_get_start_address() will return an address sign extended to fill a bfd_vma when this is the case.

Returns
Returns 1 if the target architecture is known to sign extend addresses, 0 if the target architecture is known to not sign extend addresses, and -1 otherwise.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.7 bfd_set_start_address

Synopsis
 
bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma);
Description
Make vma the entry point of output BFD abfd.

Returns
Returns TRUE on success, FALSE otherwise.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.8 bfd_get_gp_size

Synopsis
 
unsigned int bfd_get_gp_size (bfd *abfd);
Description
Return the maximum size of objects to be optimized using the GP register under MIPS ECOFF. This is typically set by the -G argument to the compiler, assembler or linker.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.9 bfd_set_gp_size

Synopsis
 
void bfd_set_gp_size (bfd *abfd, unsigned int i);
Description
Set the maximum size of objects to be optimized using the GP register under ECOFF or MIPS ELF. This is typically set by the -G argument to the compiler, assembler or linker.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.10 bfd_scan_vma

Synopsis
 
bfd_vma bfd_scan_vma (const char *string, const char **end, int base);
Description
Convert, like strtoul, a numerical expression string into a bfd_vma integer, and return that integer. (Though without as many bells and whistles as strtoul.) The expression is assumed to be unsigned (i.e., positive). If given a base, it is used as the base for conversion. A base of 0 causes the function to interpret the string in hex if a leading "0x" or "0X" is found, otherwise in octal if a leading zero is found, otherwise in decimal.

If the value would overflow, the maximum bfd_vma value is returned.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.11 bfd_copy_private_header_data

Synopsis
 
bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd);
Description
Copy private BFD header information from the BFD ibfd to the the BFD obfd. This copies information that may require sections to exist, but does not require symbol tables. Return true on success, false on error. Possible error returns are:

 
#define bfd_copy_private_header_data(ibfd, obfd) \
     BFD_SEND (obfd, _bfd_copy_private_header_data, \
               (ibfd, obfd))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.12 bfd_copy_private_bfd_data

Synopsis
 
bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);
Description
Copy private BFD information from the BFD ibfd to the the BFD obfd. Return TRUE on success, FALSE on error. Possible error returns are:

 
#define bfd_copy_private_bfd_data(ibfd, obfd) \
     BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
               (ibfd, obfd))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.13 bfd_merge_private_bfd_data

Synopsis
 
bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd);
Description
Merge private BFD information from the BFD ibfd to the the output file BFD obfd when linking. Return TRUE on success, FALSE on error. Possible error returns are:

 
#define bfd_merge_private_bfd_data(ibfd, obfd) \
     BFD_SEND (obfd, _bfd_merge_private_bfd_data, \
               (ibfd, obfd))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.14 bfd_set_private_flags

Synopsis
 
bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags);
Description
Set private BFD flag information in the BFD abfd. Return TRUE on success, FALSE on error. Possible error returns are:

 
#define bfd_set_private_flags(abfd, flags) \
     BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.15 Other functions

Description
The following functions exist but have not yet been documented.
 
#define bfd_sizeof_headers(abfd, info) \
       BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info))

#define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
       BFD_SEND (abfd, _bfd_find_nearest_line, \
                 (abfd, sec, syms, off, file, func, line))

#define bfd_find_nearest_line_discriminator(abfd, sec, syms, off, file, func, \
                                            line, disc) \
       BFD_SEND (abfd, _bfd_find_nearest_line_discriminator, \
                 (abfd, sec, syms, off, file, func, line, disc))

#define bfd_find_line(abfd, syms, sym, file, line) \
       BFD_SEND (abfd, _bfd_find_line, \
                 (abfd, syms, sym, file, line))

#define bfd_find_inliner_info(abfd, file, func, line) \
       BFD_SEND (abfd, _bfd_find_inliner_info, \
                 (abfd, file, func, line))

#define bfd_debug_info_start(abfd) \
       BFD_SEND (abfd, _bfd_debug_info_start, (abfd))

#define bfd_debug_info_end(abfd) \
       BFD_SEND (abfd, _bfd_debug_info_end, (abfd))

#define bfd_debug_info_accumulate(abfd, section) \
       BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))

#define bfd_stat_arch_elt(abfd, stat) \
       BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat))

#define bfd_update_armap_timestamp(abfd) \
       BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))

#define bfd_set_arch_mach(abfd, arch, mach)\
       BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach))

#define bfd_relax_section(abfd, section, link_info, again) \
       BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))

#define bfd_gc_sections(abfd, link_info) \
       BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))

#define bfd_lookup_section_flags(link_info, flag_info, section) \
       BFD_SEND (abfd, _bfd_lookup_section_flags, (link_info, flag_info, section))

#define bfd_merge_sections(abfd, link_info) \
       BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))

#define bfd_is_group_section(abfd, sec) \
       BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec))

#define bfd_discard_group(abfd, sec) \
       BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))

#define bfd_link_hash_table_create(abfd) \
       BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))

#define bfd_link_hash_table_free(abfd, hash) \
       BFD_SEND (abfd, _bfd_link_hash_table_free, (hash))

#define bfd_link_add_symbols(abfd, info) \
       BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))

#define bfd_link_just_syms(abfd, sec, info) \
       BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))

#define bfd_final_link(abfd, info) \
       BFD_SEND (abfd, _bfd_final_link, (abfd, info))

#define bfd_free_cached_info(abfd) \
       BFD_SEND (abfd, _bfd_free_cached_info, (abfd))

#define bfd_get_dynamic_symtab_upper_bound(abfd) \
       BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))

#define bfd_print_private_bfd_data(abfd, file)\
       BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))

#define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
       BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))

#define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \
       BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \
                                                   dyncount, dynsyms, ret))

#define bfd_get_dynamic_reloc_upper_bound(abfd) \
       BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))

#define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
       BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))

extern bfd_byte *bfd_get_relocated_section_contents
  (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *,
   bfd_boolean, asymbol **);


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.16 bfd_alt_mach_code

Synopsis
 
bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative);
Description
When more than one machine code number is available for the same machine type, this function can be used to switch between the preferred one (alternative == 0) and any others. Currently, only ELF supports this feature, with up to two alternate machine codes.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.17 bfd_emul_get_maxpagesize

Synopsis
 
bfd_vma bfd_emul_get_maxpagesize (const char *);
Description
Returns the maximum page size, in bytes, as determined by emulation.

Returns
Returns the maximum page size in bytes for ELF, 0 otherwise.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.18 bfd_emul_set_maxpagesize

Synopsis
 
void bfd_emul_set_maxpagesize (const char *, bfd_vma);
Description
For ELF, set the maximum page size for the emulation. It is a no-op for other formats.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.19 bfd_emul_get_commonpagesize

Synopsis
 
bfd_vma bfd_emul_get_commonpagesize (const char *);
Description
Returns the common page size, in bytes, as determined by emulation.

Returns
Returns the common page size in bytes for ELF, 0 otherwise.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.20 bfd_emul_set_commonpagesize

Synopsis
 
void bfd_emul_set_commonpagesize (const char *, bfd_vma);
Description
For ELF, set the common page size for the emulation. It is a no-op for other formats.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.21 bfd_demangle

Synopsis
 
char *bfd_demangle (bfd *, const char *, int);
Description
Wrapper around cplus_demangle. Strips leading underscores and other such chars that would otherwise confuse the demangler. If passed a g++ v3 ABI mangled name, returns a buffer allocated with malloc holding the demangled name. Returns NULL otherwise and on memory alloc failure.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.22 struct bfd_iovec

Description
The struct bfd_iovec contains the internal file I/O class. Each BFD has an instance of this class and all file I/O is routed through it (it is assumed that the instance implements all methods listed below).
 
struct bfd_iovec
{
  /* To avoid problems with macros, a "b" rather than "f"
     prefix is prepended to each method name.  */
  /* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching
     bytes starting at PTR.  Return the number of bytes actually
     transfered (a read past end-of-file returns less than NBYTES),
     or -1 (setting bfd_error) if an error occurs.  */
  file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes);
  file_ptr (*bwrite) (struct bfd *abfd, const void *ptr,
                      file_ptr nbytes);
  /* Return the current IOSTREAM file offset, or -1 (setting bfd_error
     if an error occurs.  */
  file_ptr (*btell) (struct bfd *abfd);
  /* For the following, on successful completion a value of 0 is returned.
     Otherwise, a value of -1 is returned (and  bfd_error is set).  */
  int (*bseek) (struct bfd *abfd, file_ptr offset, int whence);
  int (*bclose) (struct bfd *abfd);
  int (*bflush) (struct bfd *abfd);
  int (*bstat) (struct bfd *abfd, struct stat *sb);
  /* Mmap a part of the files. ADDR, LEN, PROT, FLAGS and OFFSET are the usual
     mmap parameter, except that LEN and OFFSET do not need to be page
     aligned.  Returns (void *)-1 on failure, mmapped address on success.
     Also write in MAP_ADDR the address of the page aligned buffer and in
     MAP_LEN the size mapped (a page multiple).  Use unmap with MAP_ADDR and
     MAP_LEN to unmap.  */
  void *(*bmmap) (struct bfd *abfd, void *addr, bfd_size_type len,
                  int prot, int flags, file_ptr offset,
                  void **map_addr, bfd_size_type *map_len);
};
extern const struct bfd_iovec _bfd_memory_iovec;


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.23 bfd_get_mtime

Synopsis
 
long bfd_get_mtime (bfd *abfd);
Description
Return the file modification time (as read from the file system, or from the archive header for archive members).


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.24 bfd_get_size

Synopsis
 
file_ptr bfd_get_size (bfd *abfd);
Description
Return the file size (as read from file system) for the file associated with BFD abfd.

The initial motivation for, and use of, this routine is not so we can get the exact size of the object the BFD applies to, since that might not be generally possible (archive members for example). It would be ideal if someone could eventually modify it so that such results were guaranteed.

Instead, we want to ask questions like "is this NNN byte sized object I'm about to try read from file offset YYY reasonable?" As as example of where we might do this, some object formats use string tables for which the first sizeof (long) bytes of the table contain the size of the table itself, including the size bytes. If an application tries to read what it thinks is one of these string tables, without some way to validate the size, and for some reason the size is wrong (byte swapping error, wrong location for the string table, etc.), the only clue is likely to be a read error when it tries to read the table, or a "virtual memory exhausted" error when it tries to allocate 15 bazillon bytes of space for the 15 bazillon byte table it is about to read. This function at least allows us to answer the question, "is the size reasonable?".


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.3.1.25 bfd_mmap

Synopsis
 
void *bfd_mmap (bfd *abfd, void *addr, bfd_size_type len,
    int prot, int flags, file_ptr offset,
    void **map_addr, bfd_size_type *map_len);
Description
Return mmap()ed region of the file, if possible and implemented. LEN and OFFSET do not need to be page aligned. The page aligned address and length are written to MAP_ADDR and MAP_LEN.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.4 Memory Usage

BFD keeps all of its internal structures in obstacks. There is one obstack per open BFD file, into which the current state is stored. When a BFD is closed, the obstack is deleted, and so everything which has been allocated by BFD for the closing file is thrown away.

BFD does not free anything created by an application, but pointers into bfd structures become invalid on a bfd_close; for example, after a bfd_close the vector passed to bfd_canonicalize_symtab is still around, since it has been allocated by the application, but the data that it pointed to are lost.

The general rule is to not close a BFD until all operations dependent upon data from the BFD have been completed, or all the data from within the file has been copied. To help with the management of memory, there is a function (bfd_alloc_size) which returns the number of bytes in obstacks associated with the supplied BFD. This could be used to select the greediest open BFD, close it to reclaim the memory, perform some operation and reopen the BFD again, to get a fresh copy of the data structures.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.5 Initialization


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.5.1 Initialization functions

These are the functions that handle initializing a BFD.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.5.1.1 bfd_init

Synopsis
 
void bfd_init (void);
Description
This routine must be called before any other BFD function to initialize magical internal data structures.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6 Sections

The raw data contained within a BFD is maintained through the section abstraction. A single BFD may have any number of sections. It keeps hold of them by pointing to the first; each one points to the next in the list.

Sections are supported in BFD in section.c.

2.6.1 Section input  
2.6.2 Section output  
2.6.4 typedef asection  
2.6.5 Section prototypes  


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.1 Section input

When a BFD is opened for reading, the section structures are created and attached to the BFD.

Each section has a name which describes the section in the outside world--for example, a.out would contain at least three sections, called .text, .data and .bss.

Names need not be unique; for example a COFF file may have several sections named .data.

Sometimes a BFD will contain more than the "natural" number of sections. A back end may attach other sections containing constructor data, or an application may add a section (using bfd_make_section) to the sections attached to an already open BFD. For example, the linker creates an extra section COMMON for each input file's BFD to hold information about common storage.

The raw data is not necessarily read in when the section descriptor is created. Some targets may leave the data in place until a bfd_get_section_contents call is made. Other back ends may read in all the data at once. For example, an S-record file has to be read once to determine the size of the data. An IEEE-695 file doesn't contain raw data in sections, but data and relocation expressions intermixed, so the data area has to be parsed to get out the data and relocations.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.2 Section output

To write a new object style BFD, the various sections to be written have to be created. They are attached to the BFD in the same way as input sections; data is written to the sections using bfd_set_section_contents.

Any program that creates or combines sections (e.g., the assembler and linker) must use the asection fields output_section and output_offset to indicate the file sections to which each section must be written. (If the section is being created from scratch, output_section should probably point to the section itself and output_offset should probably be zero.)

The data to be written comes from input sections attached (via output_section pointers) to the output sections. The output section structure can be considered a filter for the input section: the output section determines the vma of the output data and the name, but the input section determines the offset into the output section of the data to be written.

E.g., to create a section "O", starting at 0x100, 0x123 long, containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the asection structures would look like:

 
   section name          "A"
     output_offset   0x00
     size            0x20
     output_section ----------->  section name    "O"
                             |    vma             0x100
   section name          "B" |    size            0x123
     output_offset   0x20    |
     size            0x103   |
     output_section  --------|


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.3 Link orders

The data within a section is stored in a link_order. These are much like the fixups in gas. The link_order abstraction allows a section to grow and shrink within itself.

A link_order knows how big it is, and which is the next link_order and where the raw data for it is; it also points to a list of relocations which apply to it.

The link_order is used by the linker to perform relaxing on final code. The compiler creates code which is as big as necessary to make it work without relaxing, and the user can select whether to relax. Sometimes relaxing takes a lot of time. The linker runs around the relocations to see if any are attached to data which can be shrunk, if so it does it on a link_order by link_order basis.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.4 typedef asection

Here is the section structure:

 
typedef struct bfd_section
{
  /* The name of the section; the name isn't a copy, the pointer is
     the same as that passed to bfd_make_section.  */
  const char *name;

  /* A unique sequence number.  */
  int id;

  /* Which section in the bfd; 0..n-1 as sections are created in a bfd.  */
  int index;

  /* The next section in the list belonging to the BFD, or NULL.  */
  struct bfd_section *next;

  /* The previous section in the list belonging to the BFD, or NULL.  */
  struct bfd_section *prev;

  /* The field flags contains attributes of the section. Some
     flags are read in from the object file, and some are
     synthesized from other information.  */
  flagword flags;

#define SEC_NO_FLAGS   0x000

  /* Tells the OS to allocate space for this section when loading.
     This is clear for a section containing debug information only.  */
#define SEC_ALLOC      0x001

  /* Tells the OS to load the section from the file when loading.
     This is clear for a .bss section.  */
#define SEC_LOAD       0x002

  /* The section contains data still to be relocated, so there is
     some relocation information too.  */
#define SEC_RELOC      0x004

  /* A signal to the OS that the section contains read only data.  */
#define SEC_READONLY   0x008

  /* The section contains code only.  */
#define SEC_CODE       0x010

  /* The section contains data only.  */
#define SEC_DATA       0x020

  /* The section will reside in ROM.  */
#define SEC_ROM        0x040

  /* The section contains constructor information. This section
     type is used by the linker to create lists of constructors and
     destructors used by g++. When a back end sees a symbol
     which should be used in a constructor list, it creates a new
     section for the type of name (e.g., __CTOR_LIST__), attaches
     the symbol to it, and builds a relocation. To build the lists
     of constructors, all the linker has to do is catenate all the
     sections called __CTOR_LIST__ and relocate the data
     contained within - exactly the operations it would peform on
     standard data.  */
#define SEC_CONSTRUCTOR 0x080

  /* The section has contents - a data section could be
     SEC_ALLOC | SEC_HAS_CONTENTS; a debug section could be
     SEC_HAS_CONTENTS  */
#define SEC_HAS_CONTENTS 0x100

  /* An instruction to the linker to not output the section
     even if it has information which would normally be written.  */
#define SEC_NEVER_LOAD 0x200

  /* The section contains thread local data.  */
#define SEC_THREAD_LOCAL 0x400

  /* The section has GOT references.  This flag is only for the
     linker, and is currently only used by the elf32-hppa back end.
     It will be set if global offset table references were detected
     in this section, which indicate to the linker that the section
     contains PIC code, and must be handled specially when doing a
     static link.  */
#define SEC_HAS_GOT_REF 0x800

  /* The section contains common symbols (symbols may be defined
     multiple times, the value of a symbol is the amount of
     space it requires, and the largest symbol value is the one
     used).  Most targets have exactly one of these (which we
     translate to bfd_com_section_ptr), but ECOFF has two.  */
#define SEC_IS_COMMON 0x1000

  /* The section contains only debugging information.  For
     example, this is set for ELF .debug and .stab sections.
     strip tests this flag to see if a section can be
     discarded.  */
#define SEC_DEBUGGING 0x2000

  /* The contents of this section are held in memory pointed to
     by the contents field.  This is checked by bfd_get_section_contents,
     and the data is retrieved from memory if appropriate.  */
#define SEC_IN_MEMORY 0x4000

  /* The contents of this section are to be excluded by the
     linker for executable and shared objects unless those
     objects are to be further relocated.  */
#define SEC_EXCLUDE 0x8000

  /* The contents of this section are to be sorted based on the sum of
     the symbol and addend values specified by the associated relocation
     entries.  Entries without associated relocation entries will be
     appended to the end of the section in an unspecified order.  */
#define SEC_SORT_ENTRIES 0x10000

  /* When linking, duplicate sections of the same name should be
     discarded, rather than being combined into a single section as
     is usually done.  This is similar to how common symbols are
     handled.  See SEC_LINK_DUPLICATES below.  */
#define SEC_LINK_ONCE 0x20000

  /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
     should handle duplicate sections.  */
#define SEC_LINK_DUPLICATES 0xc0000

  /* This value for SEC_LINK_DUPLICATES means that duplicate
     sections with the same name should simply be discarded.  */
#define SEC_LINK_DUPLICATES_DISCARD 0x0

  /* This value for SEC_LINK_DUPLICATES means that the linker
     should warn if there are any duplicate sections, although
     it should still only link one copy.  */
#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000

  /* This value for SEC_LINK_DUPLICATES means that the linker
     should warn if any duplicate sections are a different size.  */
#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000

  /* This value for SEC_LINK_DUPLICATES means that the linker
     should warn if any duplicate sections contain different
     contents.  */
#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)

  /* This section was created by the linker as part of dynamic
     relocation or other arcane processing.  It is skipped when
     going through the first-pass output, trusting that someone
     else up the line will take care of it later.  */
#define SEC_LINKER_CREATED 0x100000

  /* This section should not be subject to garbage collection.
     Also set to inform the linker that this section should not be
     listed in the link map as discarded.  */
#define SEC_KEEP 0x200000

  /* This section contains "short" data, and should be placed
     "near" the GP.  */
#define SEC_SMALL_DATA 0x400000

  /* Attempt to merge identical entities in the section.
     Entity size is given in the entsize field.  */
#define SEC_MERGE 0x800000

  /* If given with SEC_MERGE, entities to merge are zero terminated
     strings where entsize specifies character size instead of fixed
     size entries.  */
#define SEC_STRINGS 0x1000000

  /* This section contains data about section groups.  */
#define SEC_GROUP 0x2000000

  /* The section is a COFF shared library section.  This flag is
     only for the linker.  If this type of section appears in
     the input file, the linker must copy it to the output file
     without changing the vma or size.  FIXME: Although this
     was originally intended to be general, it really is COFF
     specific (and the flag was renamed to indicate this).  It
     might be cleaner to have some more general mechanism to
     allow the back end to control what the linker does with
     sections.  */
#define SEC_COFF_SHARED_LIBRARY 0x4000000

  /* This input section should be copied to output in reverse order
     as an array of pointers.  This is for ELF linker internal use
     only.  */
#define SEC_ELF_REVERSE_COPY 0x4000000

  /* This section contains data which may be shared with other
     executables or shared objects. This is for COFF only.  */
#define SEC_COFF_SHARED 0x8000000

  /* When a section with this flag is being linked, then if the size of
     the input section is less than a page, it should not cross a page
     boundary.  If the size of the input section is one page or more,
     it should be aligned on a page boundary.  This is for TI
     TMS320C54X only.  */
#define SEC_TIC54X_BLOCK 0x10000000

  /* Conditionally link this section; do not link if there are no
     references found to any symbol in the section.  This is for TI
     TMS320C54X only.  */
#define SEC_TIC54X_CLINK 0x20000000

  /* Indicate that section has the no read flag set. This happens
     when memory read flag isn't set. */
#define SEC_COFF_NOREAD 0x40000000

  /*  End of section flags.  */

  /* Some internal packed boolean fields.  */

  /* See the vma field.  */
  unsigned int user_set_vma : 1;

  /* A mark flag used by some of the linker backends.  */
  unsigned int linker_mark : 1;

  /* Another mark flag used by some of the linker backends.  Set for
     output sections that have an input section.  */
  unsigned int linker_has_input : 1;

  /* Mark flag used by some linker backends for garbage collection.  */
  unsigned int gc_mark : 1;

  /* Section compression status.  */
  unsigned int compress_status : 2;
#define COMPRESS_SECTION_NONE    0
#define COMPRESS_SECTION_DONE    1
#define DECOMPRESS_SECTION_SIZED 2

  /* The following flags are used by the ELF linker. */

  /* Mark sections which have been allocated to segments.  */
  unsigned int segment_mark : 1;

  /* Type of sec_info information.  */
  unsigned int sec_info_type:3;
#define SEC_INFO_TYPE_NONE      0
#define SEC_INFO_TYPE_STABS     1
#define SEC_INFO_TYPE_MERGE     2
#define SEC_INFO_TYPE_EH_FRAME  3
#define SEC_INFO_TYPE_JUST_SYMS 4

  /* Nonzero if this section uses RELA relocations, rather than REL.  */
  unsigned int use_rela_p:1;

  /* Bits used by various backends.  The generic code doesn't touch
     these fields.  */

  unsigned int sec_flg0:1;
  unsigned int sec_flg1:1;
  unsigned int sec_flg2:1;
  unsigned int sec_flg3:1;
  unsigned int sec_flg4:1;
  unsigned int sec_flg5:1;

  /* End of internal packed boolean fields.  */

  /*  The virtual memory address of the section - where it will be
      at run time.  The symbols are relocated against this.  The
      user_set_vma flag is maintained by bfd; if it's not set, the
      backend can assign addresses (for example, in a.out, where
      the default address for .data is dependent on the specific
      target and various flags).  */
  bfd_vma vma;

  /*  The load address of the section - where it would be in a
      rom image; really only used for writing section header
      information.  */
  bfd_vma lma;

  /* The size of the section in octets, as it will be output.
     Contains a value even if the section has no contents (e.g., the
     size of .bss).  */
  bfd_size_type size;

  /* For input sections, the original size on disk of the section, in
     octets.  This field should be set for any section whose size is
     changed by linker relaxation.  It is required for sections where
     the linker relaxation scheme doesn't cache altered section and
     reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
     targets), and thus the original size needs to be kept to read the
     section multiple times.  For output sections, rawsize holds the
     section size calculated on a previous linker relaxation pass.  */
  bfd_size_type rawsize;

  /* The compressed size of the section in octets.  */
  bfd_size_type compressed_size;

  /* Relaxation table. */
  struct relax_table *relax;

  /* Count of used relaxation table entries. */
  int relax_count;


  /* If this section is going to be output, then this value is the
     offset in *bytes* into the output section of the first byte in the
     input section (byte ==> smallest addressable unit on the
     target).  In most cases, if this was going to start at the
     100th octet (8-bit quantity) in the output section, this value
     would be 100.  However, if the target byte size is 16 bits
     (bfd_octets_per_byte is "2"), this value would be 50.  */
  bfd_vma output_offset;

  /* The output section through which to map on output.  */
  struct bfd_section *output_section;

  /* The alignment requirement of the section, as an exponent of 2 -
     e.g., 3 aligns to 2^3 (or 8).  */
  unsigned int alignment_power;

  /* If an input section, a pointer to a vector of relocation
     records for the data in this section.  */
  struct reloc_cache_entry *relocation;

  /* If an output section, a pointer to a vector of pointers to
     relocation records for the data in this section.  */
  struct reloc_cache_entry **orelocation;

  /* The number of relocation records in one of the above.  */
  unsigned reloc_count;

  /* Information below is back end specific - and not always used
     or updated.  */

  /* File position of section data.  */
  file_ptr filepos;

  /* File position of relocation info.  */
  file_ptr rel_filepos;

  /* File position of line data.  */
  file_ptr line_filepos;

  /* Pointer to data for applications.  */
  void *userdata;

  /* If the SEC_IN_MEMORY flag is set, this points to the actual
     contents.  */
  unsigned char *contents;

  /* Attached line number information.  */
  alent *lineno;

  /* Number of line number records.  */
  unsigned int lineno_count;

  /* Entity size for merging purposes.  */
  unsigned int entsize;

  /* Points to the kept section if this section is a link-once section,
     and is discarded.  */
  struct bfd_section *kept_section;

  /* When a section is being output, this value changes as more
     linenumbers are written out.  */
  file_ptr moving_line_filepos;

  /* What the section number is in the target world.  */
  int target_index;

  void *used_by_bfd;

  /* If this is a constructor section then here is a list of the
     relocations created to relocate items within it.  */
  struct relent_chain *constructor_chain;

  /* The BFD which owns the section.  */
  bfd *owner;

  /* A symbol which points at this section only.  */
  struct bfd_symbol *symbol;
  struct bfd_symbol **symbol_ptr_ptr;

  /* Early in the link process, map_head and map_tail are used to build
     a list of input sections attached to an output section.  Later,
     output sections use these fields for a list of bfd_link_order
     structs.  */
  union {
    struct bfd_link_order *link_order;
    struct bfd_section *s;
  } map_head, map_tail;
} asection;

/* Relax table contains information about instructions which can
   be removed by relaxation -- replacing a long address with a
   short address.  */
struct relax_table {
  /* Address where bytes may be deleted. */
  bfd_vma addr;

  /* Number of bytes to be deleted.  */
  int size;
};

/* These sections are global, and are managed by BFD.  The application
   and target back end are not permitted to change the values in
   these sections.  */
extern asection _bfd_std_section[4];

#define BFD_ABS_SECTION_NAME "*ABS*"
#define BFD_UND_SECTION_NAME "*UND*"
#define BFD_COM_SECTION_NAME "*COM*"
#define BFD_IND_SECTION_NAME "*IND*"

/* Pointer to the common section.  */
#define bfd_com_section_ptr (&_bfd_std_section[0])
/* Pointer to the undefined section.  */
#define bfd_und_section_ptr (&_bfd_std_section[1])
/* Pointer to the absolute section.  */
#define bfd_abs_section_ptr (&_bfd_std_section[2])
/* Pointer to the indirect section.  */
#define bfd_ind_section_ptr (&_bfd_std_section[3])

#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)

#define bfd_is_const_section(SEC)              \
 (   ((SEC) == bfd_abs_section_ptr)            \
  || ((SEC) == bfd_und_section_ptr)            \
  || ((SEC) == bfd_com_section_ptr)            \
  || ((SEC) == bfd_ind_section_ptr))

/* Macros to handle insertion and deletion of a bfd's sections.  These
   only handle the list pointers, ie. do not adjust section_count,
   target_index etc.  */
#define bfd_section_list_remove(ABFD, S) \
  do                                                   \
    {                                                  \
      asection *_s = S;                                \
      asection *_next = _s->next;                      \
      asection *_prev = _s->prev;                      \
      if (_prev)                                       \
        _prev->next = _next;                           \
      else                                             \
        (ABFD)->sections = _next;                      \
      if (_next)                                       \
        _next->prev = _prev;                           \
      else                                             \
        (ABFD)->section_last = _prev;                  \
    }                                                  \
  while (0)
#define bfd_section_list_append(ABFD, S) \
  do                                                   \
    {                                                  \
      asection *_s = S;                                \
      bfd *_abfd = ABFD;                               \
      _s->next = NULL;                                 \
      if (_abfd->section_last)                         \
        {                                              \
          _s->prev = _abfd->section_last;              \
          _abfd->section_last->next = _s;              \
        }                                              \
      else                                             \
        {                                              \
          _s->prev = NULL;                             \
          _abfd->sections = _s;                        \
        }                                              \
      _abfd->section_last = _s;                        \
    }                                                  \
  while (0)
#define bfd_section_list_prepend(ABFD, S) \
  do                                                   \
    {                                                  \
      asection *_s = S;                                \
      bfd *_abfd = ABFD;                               \
      _s->prev = NULL;                                 \
      if (_abfd->sections)                             \
        {                                              \
          _s->next = _abfd->sections;                  \
          _abfd->sections->prev = _s;                  \
        }                                              \
      else                                             \
        {                                              \
          _s->next = NULL;                             \
          _abfd->section_last = _s;                    \
        }                                              \
      _abfd->sections = _s;                            \
    }                                                  \
  while (0)
#define bfd_section_list_insert_after(ABFD, A, S) \
  do                                                   \
    {                                                  \
      asection *_a = A;                                \
      asection *_s = S;                                \
      asection *_next = _a->next;                      \
      _s->next = _next;                                \
      _s->prev = _a;                                   \
      _a->next = _s;                                   \
      if (_next)                                       \
        _next->prev = _s;                              \
      else                                             \
        (ABFD)->section_last = _s;                     \
    }                                                  \
  while (0)
#define bfd_section_list_insert_before(ABFD, B, S) \
  do                                                   \
    {                                                  \
      asection *_b = B;                                \
      asection *_s = S;                                \
      asection *_prev = _b->prev;                      \
      _s->prev = _prev;                                \
      _s->next = _b;                                   \
      _b->prev = _s;                                   \
      if (_prev)                                       \
        _prev->next = _s;                              \
      else                                             \
        (ABFD)->sections = _s;                         \
    }                                                  \
  while (0)
#define bfd_section_removed_from_list(ABFD, S) \
  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))

#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX)                   \
  /* name, id,  index, next, prev, flags, user_set_vma,            */  \
  { NAME,  IDX, 0,     NULL, NULL, FLAGS, 0,                           \
                                                                       \
  /* linker_mark, linker_has_input, gc_mark, decompress_status,    */  \
     0,           0,                1,       0,                        \
                                                                       \
  /* segment_mark, sec_info_type, use_rela_p,                      */  \
     0,            0,             0,                                   \
                                                                       \
  /* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5,   */  \
     0,        0,        0,        0,        0,        0,              \
                                                                       \
  /* vma, lma, size, rawsize, compressed_size, relax, relax_count, */  \
     0,   0,   0,    0,       0,               0,     0,               \
                                                                       \
  /* output_offset, output_section, alignment_power,               */  \
     0,             &SEC,           0,                                 \
                                                                       \
  /* relocation, orelocation, reloc_count, filepos, rel_filepos,   */  \
     NULL,       NULL,        0,           0,       0,                 \
                                                                       \
  /* line_filepos, userdata, contents, lineno, lineno_count,       */  \
     0,            NULL,     NULL,     NULL,   0,                      \
                                                                       \
  /* entsize, kept_section, moving_line_filepos,                    */ \
     0,       NULL,          0,                                        \
                                                                       \
  /* target_index, used_by_bfd, constructor_chain, owner,          */  \
     0,            NULL,        NULL,              NULL,               \
                                                                       \
  /* symbol,                    symbol_ptr_ptr,                    */  \
     (struct bfd_symbol *) SYM, &SEC.symbol,                           \
                                                                       \
  /* map_head, map_tail                                            */  \
     { NULL }, { NULL }                                                \
    }


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5 Section prototypes

These are the functions exported by the section handling part of BFD.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.1 bfd_section_list_clear

Synopsis
 
void bfd_section_list_clear (bfd *);
Description
Clears the section list, and also resets the section count and hash table entries.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.2 bfd_get_section_by_name

Synopsis
 
asection *bfd_get_section_by_name (bfd *abfd, const char *name);
Description
Return the most recently created section attached to abfd named name. Return NULL if no such section exists.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.3 bfd_get_next_section_by_name

Synopsis
 
asection *bfd_get_next_section_by_name (asection *sec);
Description
Given sec is a section returned by bfd_get_section_by_name, return the next most recently created section attached to the same BFD with the same name. Return NULL if no such section exists.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.4 bfd_get_linker_section

Synopsis
 
asection *bfd_get_linker_section (bfd *abfd, const char *name);
Description
Return the linker created section attached to abfd named name. Return NULL if no such section exists.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.5 bfd_get_section_by_name_if

Synopsis
 
asection *bfd_get_section_by_name_if
   (bfd *abfd,
    const char *name,
    bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
    void *obj);
Description
Call the provided function func for each section attached to the BFD abfd whose name matches name, passing obj as an argument. The function will be called as if by

 
       func (abfd, the_section, obj);

It returns the first section for which func returns true, otherwise NULL.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.6 bfd_get_unique_section_name

Synopsis
 
char *bfd_get_unique_section_name
   (bfd *abfd, const char *templat, int *count);
Description
Invent a section name that is unique in abfd by tacking a dot and a digit suffix onto the original templat. If count is non-NULL, then it specifies the first number tried as a suffix to generate a unique name. The value pointed to by count will be incremented in this case.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.7 bfd_make_section_old_way

Synopsis
 
asection *bfd_make_section_old_way (bfd *abfd, const char *name);
Description
Create a new empty section called name and attach it to the end of the chain of sections for the BFD abfd. An attempt to create a section with a name which is already in use returns its pointer without changing the section chain.

It has the funny name since this is the way it used to be before it was rewritten....

Possible errors are:


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.8 bfd_make_section_anyway_with_flags

Synopsis
 
asection *bfd_make_section_anyway_with_flags
   (bfd *abfd, const char *name, flagword flags);
Description
Create a new empty section called name and attach it to the end of the chain of sections for abfd. Create a new section even if there is already a section with that name. Also set the attributes of the new section to the value flags.

Return NULL and set bfd_error on error; possible errors are:


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.9 bfd_make_section_anyway

Synopsis
 
asection *bfd_make_section_anyway (bfd *abfd, const char *name);
Description
Create a new empty section called name and attach it to the end of the chain of sections for abfd. Create a new section even if there is already a section with that name.

Return NULL and set bfd_error on error; possible errors are:


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.10 bfd_make_section_with_flags

Synopsis
 
asection *bfd_make_section_with_flags
   (bfd *, const char *name, flagword flags);
Description
Like bfd_make_section_anyway, but return NULL (without calling bfd_set_error ()) without changing the section chain if there is already a section named name. Also set the attributes of the new section to the value flags. If there is an error, return NULL and set bfd_error.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.11 bfd_make_section

Synopsis
 
asection *bfd_make_section (bfd *, const char *name);
Description
Like bfd_make_section_anyway, but return NULL (without calling bfd_set_error ()) without changing the section chain if there is already a section named name. If there is an error, return NULL and set bfd_error.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.12 bfd_set_section_flags

Synopsis
 
bfd_boolean bfd_set_section_flags
   (bfd *abfd, asection *sec, flagword flags);
Description
Set the attributes of the section sec in the BFD abfd to the value flags. Return TRUE on success, FALSE on error. Possible error returns are:


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.13 bfd_rename_section

Synopsis
 
void bfd_rename_section
   (bfd *abfd, asection *sec, const char *newname);
Description
Rename section sec in abfd to newname.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.14 bfd_map_over_sections

Synopsis
 
void bfd_map_over_sections
   (bfd *abfd,
    void (*func) (bfd *abfd, asection *sect, void *obj),
    void *obj);
Description
Call the provided function func for each section attached to the BFD abfd, passing obj as an argument. The function will be called as if by

 
       func (abfd, the_section, obj);

This is the preferred method for iterating over sections; an alternative would be to use a loop:

 
          asection *p;
          for (p = abfd->sections; p != NULL; p = p->next)
             func (abfd, p, ...)


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.15 bfd_sections_find_if

Synopsis
 
asection *bfd_sections_find_if
   (bfd *abfd,
    bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
    void *obj);
Description
Call the provided function operation for each section attached to the BFD abfd, passing obj as an argument. The function will be called as if by

 
       operation (abfd, the_section, obj);

It returns the first section for which operation returns true.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.16 bfd_set_section_size

Synopsis
 
bfd_boolean bfd_set_section_size
   (bfd *abfd, asection *sec, bfd_size_type val);
Description
Set sec to the size val. If the operation is ok, then TRUE is returned, else FALSE.

Possible error returns:


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.17 bfd_set_section_contents

Synopsis
 
bfd_boolean bfd_set_section_contents
   (bfd *abfd, asection *section, const void *data,
    file_ptr offset, bfd_size_type count);
Description
Sets the contents of the section section in BFD abfd to the data starting in memory at data. The data is written to the output section starting at offset offset for count octets.

Normally TRUE is returned, else FALSE. Possible error returns are:

This routine is front end to the back end function _bfd_set_section_contents.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.18 bfd_get_section_contents

Synopsis
 
bfd_boolean bfd_get_section_contents
   (bfd *abfd, asection *section, void *location, file_ptr offset,
    bfd_size_type count);
Description
Read data from section in BFD abfd into memory starting at location. The data is read at an offset of offset from the start of the input section, and is read for count bytes.

If the contents of a constructor with the SEC_CONSTRUCTOR flag set are requested or if the section does not have the SEC_HAS_CONTENTS flag set, then the location is filled with zeroes. If no errors occur, TRUE is returned, else FALSE.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.19 bfd_malloc_and_get_section

Synopsis
 
bfd_boolean bfd_malloc_and_get_section
   (bfd *abfd, asection *section, bfd_byte **buf);
Description
Read all data from section in BFD abfd into a buffer, *buf, malloc'd by this function.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.20 bfd_copy_private_section_data

Synopsis
 
bfd_boolean bfd_copy_private_section_data
   (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
Description
Copy private section information from isec in the BFD ibfd to the section osec in the BFD obfd. Return TRUE on success, FALSE on error. Possible error returns are:

 
#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
     BFD_SEND (obfd, _bfd_copy_private_section_data, \
               (ibfd, isection, obfd, osection))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.21 bfd_generic_is_group_section

Synopsis
 
bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
Description
Returns TRUE if sec is a member of a group.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.6.5.22 bfd_generic_discard_group

Synopsis
 
bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
Description
Remove all members of group from the output.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7 Symbols

BFD tries to maintain as much symbol information as it can when it moves information from file to file. BFD passes information to applications though the asymbol structure. When the application requests the symbol table, BFD reads the table in the native form and translates parts of it into the internal format. To maintain more than the information passed to applications, some targets keep some information "behind the scenes" in a structure only the particular back end knows about. For example, the coff back end keeps the original symbol table structure as well as the canonical structure when a BFD is read in. On output, the coff back end can reconstruct the output symbol table so that no information is lost, even information unique to coff which BFD doesn't know or understand. If a coff symbol table were read, but were written through an a.out back end, all the coff specific information would be lost. The symbol table of a BFD is not necessarily read in until a canonicalize request is made. Then the BFD back end fills in a table provided by the application with pointers to the canonical information. To output symbols, the application provides BFD with a table of pointers to pointers to asymbols. This allows applications like the linker to output a symbol as it was read, since the "behind the scenes" information will be still available.
2.7.1 Reading symbols  
2.7.2 Writing symbols  
2.7.3 Mini Symbols  
2.7.4 typedef asymbol  
2.7.5 Symbol handling functions  


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.1 Reading symbols

There are two stages to reading a symbol table from a BFD: allocating storage, and the actual reading process. This is an excerpt from an application which reads the symbol table:

 
         long storage_needed;
         asymbol **symbol_table;
         long number_of_symbols;
         long i;

         storage_needed = bfd_get_symtab_upper_bound (abfd);

         if (storage_needed < 0)
           FAIL

         if (storage_needed == 0)
           return;

         symbol_table = xmalloc (storage_needed);
           ...
         number_of_symbols =
            bfd_canonicalize_symtab (abfd, symbol_table);

         if (number_of_symbols < 0)
           FAIL

         for (i = 0; i < number_of_symbols; i++)
           process_symbol (symbol_table[i]);

All storage for the symbols themselves is in an objalloc connected to the BFD; it is freed when the BFD is closed.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.2 Writing symbols

Writing of a symbol table is automatic when a BFD open for writing is closed. The application attaches a vector of pointers to pointers to symbols to the BFD being written, and fills in the symbol count. The close and cleanup code reads through the table provided and performs all the necessary operations. The BFD output code must always be provided with an "owned" symbol: one which has come from another BFD, or one which has been created using bfd_make_empty_symbol. Here is an example showing the creation of a symbol table with only one element:

 
       #include "sysdep.h"
       #include "bfd.h"
       int main (void)
       {
         bfd *abfd;
         asymbol *ptrs[2];
         asymbol *new;

         abfd = bfd_openw ("foo","a.out-sunos-big");
         bfd_set_format (abfd, bfd_object);
         new = bfd_make_empty_symbol (abfd);
         new->name = "dummy_symbol";
         new->section = bfd_make_section_old_way (abfd, ".text");
         new->flags = BSF_GLOBAL;
         new->value = 0x12345;

         ptrs[0] = new;
         ptrs[1] = 0;

         bfd_set_symtab (abfd, ptrs, 1);
         bfd_close (abfd);
         return 0;
       }

       ./makesym
       nm foo
       00012345 A dummy_symbol

Many formats cannot represent arbitrary symbol information; for instance, the a.out object format does not allow an arbitrary number of sections. A symbol pointing to a section which is not one of .text, .data or .bss cannot be described.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.3 Mini Symbols

Mini symbols provide read-only access to the symbol table. They use less memory space, but require more time to access. They can be useful for tools like nm or objdump, which may have to handle symbol tables of extremely large executables.

The bfd_read_minisymbols function will read the symbols into memory in an internal form. It will return a void * pointer to a block of memory, a symbol count, and the size of each symbol. The pointer is allocated using malloc, and should be freed by the caller when it is no longer needed.

The function bfd_minisymbol_to_symbol will take a pointer to a minisymbol, and a pointer to a structure returned by bfd_make_empty_symbol, and return a asymbol structure. The return value may or may not be the same as the value from bfd_make_empty_symbol which was passed in.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.4 typedef asymbol

An asymbol has the form:

 
typedef struct bfd_symbol
{
  /* A pointer to the BFD which owns the symbol. This information
     is necessary so that a back end can work out what additional
     information (invisible to the application writer) is carried
     with the symbol.

     This field is *almost* redundant, since you can use section->owner
     instead, except that some symbols point to the global sections
     bfd_{abs,com,und}_section.  This could be fixed by making
     these globals be per-bfd (or per-target-flavor).  FIXME.  */
  struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field.  */

  /* The text of the symbol. The name is left alone, and not copied; the
     application may not alter it.  */
  const char *name;

  /* The value of the symbol.  This really should be a union of a
     numeric value with a pointer, since some flags indicate that
     a pointer to another symbol is stored here.  */
  symvalue value;

  /* Attributes of a symbol.  */
#define BSF_NO_FLAGS           0x00

  /* The symbol has local scope; static in C. The value
     is the offset into the section of the data.  */
#define BSF_LOCAL              (1 << 0)

  /* The symbol has global scope; initialized data in C. The
     value is the offset into the section of the data.  */
#define BSF_GLOBAL             (1 << 1)

  /* The symbol has global scope and is exported. The value is
     the offset into the section of the data.  */
#define BSF_EXPORT     BSF_GLOBAL /* No real difference.  */

  /* A normal C symbol would be one of:
     BSF_LOCAL, BSF_COMMON,  BSF_UNDEFINED or
     BSF_GLOBAL.  */

  /* The symbol is a debugging record. The value has an arbitrary
     meaning, unless BSF_DEBUGGING_RELOC is also set.  */
#define BSF_DEBUGGING          (1 << 2)

  /* The symbol denotes a function entry point.  Used in ELF,
     perhaps others someday.  */
#define BSF_FUNCTION           (1 << 3)

  /* Used by the linker.  */
#define BSF_KEEP               (1 << 5)
#define BSF_KEEP_G             (1 << 6)

  /* A weak global symbol, overridable without warnings by
     a regular global symbol of the same name.  */
#define BSF_WEAK               (1 << 7)

  /* This symbol was created to point to a section, e.g. ELF's
     STT_SECTION symbols.  */
#define BSF_SECTION_SYM        (1 << 8)

  /* The symbol used to be a common symbol, but now it is
     allocated.  */
#define BSF_OLD_COMMON         (1 << 9)

  /* In some files the type of a symbol sometimes alters its
     location in an output file - ie in coff a ISFCN symbol
     which is also C_EXT symbol appears where it was
     declared and not at the end of a section.  This bit is set
     by the target BFD part to convey this information.  */
#define BSF_NOT_AT_END         (1 << 10)

  /* Signal that the symbol is the label of constructor section.  */
#define BSF_CONSTRUCTOR        (1 << 11)

  /* Signal that the symbol is a warning symbol.  The name is a
     warning.  The name of the next symbol is the one to warn about;
     if a reference is made to a symbol with the same name as the next
     symbol, a warning is issued by the linker.  */
#define BSF_WARNING            (1 << 12)

  /* Signal that the symbol is indirect.  This symbol is an indirect
     pointer to the symbol with the same name as the next symbol.  */
#define BSF_INDIRECT           (1 << 13)

  /* BSF_FILE marks symbols that contain a file name.  This is used
     for ELF STT_FILE symbols.  */
#define BSF_FILE               (1 << 14)

  /* Symbol is from dynamic linking information.  */
#define BSF_DYNAMIC            (1 << 15)

  /* The symbol denotes a data object.  Used in ELF, and perhaps
     others someday.  */
#define BSF_OBJECT             (1 << 16)

  /* This symbol is a debugging symbol.  The value is the offset
     into the section of the data.  BSF_DEBUGGING should be set
     as well.  */
#define BSF_DEBUGGING_RELOC    (1 << 17)

  /* This symbol is thread local.  Used in ELF.  */
#define BSF_THREAD_LOCAL       (1 << 18)

  /* This symbol represents a complex relocation expression,
     with the expression tree serialized in the symbol name.  */
#define BSF_RELC               (1 << 19)

  /* This symbol represents a signed complex relocation expression,
     with the expression tree serialized in the symbol name.  */
#define BSF_SRELC              (1 << 20)

  /* This symbol was created by bfd_get_synthetic_symtab.  */
#define BSF_SYNTHETIC          (1 << 21)

  /* This symbol is an indirect code object.  Unrelated to BSF_INDIRECT.
     The dynamic linker will compute the value of this symbol by
     calling the function that it points to.  BSF_FUNCTION must
     also be also set.  */
#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
  /* This symbol is a globally unique data object.  The dynamic linker
     will make sure that in the entire process there is just one symbol
     with this name and type in use.  BSF_OBJECT must also be set.  */
#define BSF_GNU_UNIQUE         (1 << 23)

  flagword flags;

  /* A pointer to the section to which this symbol is
     relative.  This will always be non NULL, there are special
     sections for undefined and absolute symbols.  */
  struct bfd_section *section;

  /* Back end special data.  */
  union
    {
      void *p;
      bfd_vma i;
    }
  udata;
}
asymbol;


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5 Symbol handling functions


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.1 bfd_get_symtab_upper_bound

Description
Return the number of bytes required to store a vector of pointers to asymbols for all the symbols in the BFD abfd, including a terminal NULL pointer. If there are no symbols in the BFD, then return 0. If an error occurs, return -1.
 
#define bfd_get_symtab_upper_bound(abfd) \
     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.2 bfd_is_local_label

Synopsis
 
bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
Description
Return TRUE if the given symbol sym in the BFD abfd is a compiler generated local label, else return FALSE.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.3 bfd_is_local_label_name

Synopsis
 
bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
Description
Return TRUE if a symbol with the name name in the BFD abfd is a compiler generated local label, else return FALSE. This just checks whether the name has the form of a local label.
 
#define bfd_is_local_label_name(abfd, name) \
  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.4 bfd_is_target_special_symbol

Synopsis
 
bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
Description
Return TRUE iff a symbol sym in the BFD abfd is something special to the particular target represented by the BFD. Such symbols should normally not be mentioned to the user.
 
#define bfd_is_target_special_symbol(abfd, sym) \
  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.5 bfd_canonicalize_symtab

Description
Read the symbols from the BFD abfd, and fills in the vector location with pointers to the symbols and a trailing NULL. Return the actual number of symbol pointers, not including the NULL.
 
#define bfd_canonicalize_symtab(abfd, location) \
  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.6 bfd_set_symtab

Synopsis
 
bfd_boolean bfd_set_symtab
   (bfd *abfd, asymbol **location, unsigned int count);
Description
Arrange that when the output BFD abfd is closed, the table location of count pointers to symbols will be written.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.7 bfd_print_symbol_vandf

Synopsis
 
void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
Description
Print the value and flags of the symbol supplied to the stream file.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.8 bfd_make_empty_symbol

Description
Create a new asymbol structure for the BFD abfd and return a pointer to it.

This routine is necessary because each back end has private information surrounding the asymbol. Building your own asymbol and pointing to it will not create the private information, and will cause problems later on.
 
#define bfd_make_empty_symbol(abfd) \
  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.9 _bfd_generic_make_empty_symbol

Synopsis
 
asymbol *_bfd_generic_make_empty_symbol (bfd *);
Description
Create a new asymbol structure for the BFD abfd and return a pointer to it. Used by core file routines, binary back-end and anywhere else where no private info is needed.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.10 bfd_make_debug_symbol

Description
Create a new asymbol structure for the BFD abfd, to be used as a debugging symbol. Further details of its use have yet to be worked out.
 
#define bfd_make_debug_symbol(abfd,ptr,size) \
  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.11 bfd_decode_symclass

Description
Return a character corresponding to the symbol class of symbol, or '?' for an unknown class.

Synopsis
 
int bfd_decode_symclass (asymbol *symbol);


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.12 bfd_is_undefined_symclass

Description
Returns non-zero if the class symbol returned by bfd_decode_symclass represents an undefined symbol. Returns zero otherwise.

Synopsis
 
bfd_boolean bfd_is_undefined_symclass (int symclass);


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.13 bfd_symbol_info

Description
Fill in the basic info about symbol that nm needs. Additional info may be added by the back-ends after calling this function.

Synopsis
 
void bfd_symbol_info (asymbol *symbol, symbol_info *ret);


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.7.5.14 bfd_copy_private_symbol_data

Synopsis
 
bfd_boolean bfd_copy_private_symbol_data
   (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
Description
Copy private symbol information from isym in the BFD ibfd to the symbol osym in the BFD obfd. Return TRUE on success, FALSE on error. Possible error returns are:

 
#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
            (ibfd, isymbol, obfd, osymbol))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.8 Archives

Description
An archive (or library) is just another BFD. It has a symbol table, although there's not much a user program will do with it.

The big difference between an archive BFD and an ordinary BFD is that the archive doesn't have sections. Instead it has a chain of BFDs that are considered its contents. These BFDs can be manipulated like any other. The BFDs contained in an archive opened for reading will all be opened for reading. You may put either input or output BFDs into an archive opened for output; they will be handled correctly when the archive is closed.

Use bfd_openr_next_archived_file to step through the contents of an archive opened for input. You don't have to read the entire archive if you don't want to! Read it until you find what you want.

A BFD returned by bfd_openr_next_archived_file can be closed manually with bfd_close. If you do not close it, then a second iteration through the members of an archive may return the same BFD. If you close the archive BFD, then all the member BFDs will automatically be closed as well.

Archive contents of output BFDs are chained through the archive_next pointer in a BFD. The first one is findable through the archive_head slot of the archive. Set it with bfd_set_archive_head (q.v.). A given BFD may be in only one open output archive at a time.

As expected, the BFD archive code is more general than the archive code of any given environment. BFD archives may contain files of different formats (e.g., a.out and coff) and even different architectures. You may even place archives recursively into archives!

This can cause unexpected confusion, since some archive formats are more expressive than others. For instance, Intel COFF archives can preserve long filenames; SunOS a.out archives cannot. If you move a file from the first to the second format and back again, the filename may be truncated. Likewise, different a.out environments have different conventions as to how they truncate filenames, whether they preserve directory names in filenames, etc. When interoperating with native tools, be sure your files are homogeneous.

Beware: most of these formats do not react well to the presence of spaces in filenames. We do the best we can, but can't always handle this case due to restrictions in the format of archives. Many Unix utilities are braindead in regards to spaces and such in filenames anyway, so this shouldn't be much of a restriction.

Archives are supported in BFD in archive.c.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.8.1 Archive functions


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.8.1.1 bfd_get_next_mapent

Synopsis
 
symindex bfd_get_next_mapent
   (bfd *abfd, symindex previous, carsym **sym);
Description
Step through archive abfd's symbol table (if it has one). Successively update sym with the next symbol's information, returning that symbol's (internal) index into the symbol table.

Supply BFD_NO_MORE_SYMBOLS as the previous entry to get the first one; returns BFD_NO_MORE_SYMBOLS when you've already got the last one.

A carsym is a canonical archive symbol. The only user-visible element is its name, a null-terminated string.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.8.1.2 bfd_set_archive_head

Synopsis
 
bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head);
Description
Set the head of the chain of BFDs contained in the archive output to new_head.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.8.1.3 bfd_openr_next_archived_file

Synopsis
 
bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous);
Description
Provided a BFD, archive, containing an archive and NULL, open an input BFD on the first contained element and returns that. Subsequent calls should pass the archive and the previous return value to return a created BFD to the next contained element. NULL is returned when there are no more.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.9 File formats

A format is a BFD concept of high level file contents type. The formats supported by BFD are:

The BFD may contain data, symbols, relocations and debug info.

The BFD contains other BFDs and an optional index.

The BFD contains the result of an executable core dump.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.9.1 File format functions


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.9.1.1 bfd_check_format

Synopsis
 
bfd_boolean bfd_check_format (bfd *abfd, bfd_format format);
Description
Verify if the file attached to the BFD abfd is compatible with the format format (i.e., one of bfd_object, bfd_archive or bfd_core).

If the BFD has been set to a specific target before the call, only the named target and format combination is checked. If the target has not been set, or has been set to default, then all the known target backends is interrogated to determine a match. If the default target matches, it is used. If not, exactly one target must recognize the file, or an error results.

The function returns TRUE on success, otherwise FALSE with one of the following error codes:


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.9.1.2 bfd_check_format_matches

Synopsis
 
bfd_boolean bfd_check_format_matches
   (bfd *abfd, bfd_format format, char ***matching);
Description
Like bfd_check_format, except when it returns FALSE with bfd_errno set to bfd_error_file_ambiguously_recognized. In that case, if matching is not NULL, it will be filled in with a NULL-terminated list of the names of the formats that matched, allocated with malloc. Then the user may choose a format and try again.

When done with the list that matching points to, the caller should free it.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.9.1.3 bfd_set_format

Synopsis
 
bfd_boolean bfd_set_format (bfd *abfd, bfd_format format);
Description
This function sets the file format of the BFD abfd to the format format. If the target set in the BFD does not support the format requested, the format is invalid, or the BFD is not open for writing, then an error occurs.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.9.1.4 bfd_format_string

Synopsis
 
const char *bfd_format_string (bfd_format format);
Description
Return a pointer to a const string invalid, object, archive, core, or unknown, depending upon the value of format.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10 Relocations

BFD maintains relocations in much the same way it maintains symbols: they are left alone until required, then read in en-masse and translated into an internal form. A common routine bfd_perform_relocation acts upon the canonical form to do the fixup.

Relocations are maintained on a per section basis, while symbols are maintained on a per BFD basis.

All that a back end has to do to fit the BFD interface is to create a struct reloc_cache_entry for each relocation in a particular section, and fill in the right bits of the structures.

2.10.1 typedef arelent  
2.10.2 The howto manager  


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.1 typedef arelent

This is the structure of a relocation entry:

 
typedef enum bfd_reloc_status
{
  /* No errors detected.  */
  bfd_reloc_ok,

  /* The relocation was performed, but there was an overflow.  */
  bfd_reloc_overflow,

  /* The address to relocate was not within the section supplied.  */
  bfd_reloc_outofrange,

  /* Used by special functions.  */
  bfd_reloc_continue,

  /* Unsupported relocation size requested.  */
  bfd_reloc_notsupported,

  /* Unused.  */
  bfd_reloc_other,

  /* The symbol to relocate against was undefined.  */
  bfd_reloc_undefined,

  /* The relocation was performed, but may not be ok - presently
     generated only when linking i960 coff files with i960 b.out
     symbols.  If this type is returned, the error_message argument
     to bfd_perform_relocation will be set.  */
  bfd_reloc_dangerous
 }
 bfd_reloc_status_type;


typedef struct reloc_cache_entry
{
  /* A pointer into the canonical table of pointers.  */
  struct bfd_symbol **sym_ptr_ptr;

  /* offset in section.  */
  bfd_size_type address;

  /* addend for relocation value.  */
  bfd_vma addend;

  /* Pointer to how to perform the required relocation.  */
  reloc_howto_type *howto;

}
arelent;

Description
Here is a description of each of the fields within an arelent:

The symbol table pointer points to a pointer to the symbol associated with the relocation request. It is the pointer into the table returned by the back end's canonicalize_symtab action. See section 2.7 Symbols. The symbol is referenced through a pointer to a pointer so that tools like the linker can fix up all the symbols of the same name by modifying only one pointer. The relocation routine looks in the symbol and uses the base of the section the symbol is attached to and the value of the symbol as the initial relocation offset. If the symbol pointer is zero, then the section provided is looked up.

The address field gives the offset in bytes from the base of the section data which owns the relocation record to the first byte of relocatable information. The actual data relocated will be relative to this point; for example, a relocation type which modifies the bottom two bytes of a four byte word would not touch the first byte pointed to in a big endian world.

The addend is a value provided by the back end to be added (!) to the relocation offset. Its interpretation is dependent upon the howto. For example, on the 68k the code:

 
        char foo[];
        main()
                {
                return foo[0x12345678];
                }

Could be compiled into:

 
        linkw fp,#-4
        moveb @#12345678,d0
        extbl d0
        unlk fp
        rts

This could create a reloc pointing to foo, but leave the offset in the data, something like:

 
RELOCATION RECORDS FOR [.text]:
offset   type      value
00000006 32        _foo

00000000 4e56 fffc          ; linkw fp,#-4
00000004 1039 1234 5678     ; moveb @#12345678,d0
0000000a 49c0               ; extbl d0
0000000c 4e5e               ; unlk fp
0000000e 4e75               ; rts

Using coff and an 88k, some instructions don't have enough space in them to represent the full address range, and pointers have to be loaded in two parts. So you'd get something like:

 
        or.u     r13,r0,hi16(_foo+0x12345678)
        ld.b     r2,r13,lo16(_foo+0x12345678)
        jmp      r1

This should create two relocs, both pointing to _foo, and with 0x12340000 in their addend field. The data would consist of:

 
RELOCATION RECORDS FOR [.text]:
offset   type      value
00000002 HVRT16    _foo+0x12340000
00000006 LVRT16    _foo+0x12340000

00000000 5da05678           ; or.u r13,r0,0x5678
00000004 1c4d5678           ; ld.b r2,r13,0x5678
00000008 f400c001           ; jmp r1

The relocation routine digs out the value from the data, adds it to the addend to get the original offset, and then adds the value of _foo. Note that all 32 bits have to be kept around somewhere, to cope with carry from bit 15 to bit 16.

One further example is the sparc and the a.out format. The sparc has a similar problem to the 88k, in that some instructions don't have room for an entire offset, but on the sparc the parts are created in odd sized lumps. The designers of the a.out format chose to not use the data within the section for storing part of the offset; all the offset is kept within the reloc. Anything in the data should be ignored.

 
        save %sp,-112,%sp
        sethi %hi(_foo+0x12345678),%g2
        ldsb [%g2+%lo(_foo+0x12345678)],%i0
        ret
        restore

Both relocs contain a pointer to foo, and the offsets contain junk.

 
RELOCATION RECORDS FOR [.text]:
offset   type      value
00000004 HI22      _foo+0x12345678
00000008 LO10      _foo+0x12345678

00000000 9de3bf90     ; save %sp,-112,%sp
00000004 05000000     ; sethi %hi(_foo+0),%g2
00000008 f048a000     ; ldsb [%g2+%lo(_foo+0)],%i0
0000000c 81c7e008     ; ret
00000010 81e80000     ; restore

The howto field can be imagined as a relocation instruction. It is a pointer to a structure which contains information on what to do with all of the other information in the reloc record and data section. A back end would normally have a relocation instruction set and turn relocations into pointers to the correct structure on input - but it would be possible to create each howto field on demand.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.1.1 enum complain_overflow

Indicates what sort of overflow checking should be done when performing a relocation.

 
enum complain_overflow
{
  /* Do not complain on overflow.  */
  complain_overflow_dont,

  /* Complain if the value overflows when considered as a signed
     number one bit larger than the field.  ie. A bitfield of N bits
     is allowed to represent -2**n to 2**n-1.  */
  complain_overflow_bitfield,

  /* Complain if the value overflows when considered as a signed
     number.  */
  complain_overflow_signed,

  /* Complain if the value overflows when considered as an
     unsigned number.  */
  complain_overflow_unsigned
};


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.1.2 reloc_howto_type

The reloc_howto_type is a structure which contains all the information that libbfd needs to know to tie up a back end's data.

 
struct bfd_symbol;             /* Forward declaration.  */

struct reloc_howto_struct
{
  /*  The type field has mainly a documentary use - the back end can
      do what it wants with it, though normally the back end's
      external idea of what a reloc number is stored
      in this field.  For example, a PC relative word relocation
      in a coff environment has the type 023 - because that's
      what the outside world calls a R_PCRWORD reloc.  */
  unsigned int type;

  /*  The value the final relocation is shifted right by.  This drops
      unwanted data from the relocation.  */
  unsigned int rightshift;

  /*  The size of the item to be relocated.  This is *not* a
      power-of-two measure.  To get the number of bytes operated
      on by a type of relocation, use bfd_get_reloc_size.  */
  int size;

  /*  The number of bits in the item to be relocated.  This is used
      when doing overflow checking.  */
  unsigned int bitsize;

  /*  The relocation is relative to the field being relocated.  */
  bfd_boolean pc_relative;

  /*  The bit position of the reloc value in the destination.
      The relocated value is left shifted by this amount.  */
  unsigned int bitpos;

  /* What type of overflow error should be checked for when
     relocating.  */
  enum complain_overflow complain_on_overflow;

  /* If this field is non null, then the supplied function is
     called rather than the normal function.  This allows really
     strange relocation methods to be accommodated (e.g., i960 callj
     instructions).  */
  bfd_reloc_status_type (*special_function)
    (bfd *, arelent *, struct bfd_symbol *, void *, asection *,
     bfd *, char **);

  /* The textual name of the relocation type.  */
  char *name;

  /* Some formats record a relocation addend in the section contents
     rather than with the relocation.  For ELF formats this is the
     distinction between USE_REL and USE_RELA (though the code checks
     for USE_REL == 1/0).  The value of this field is TRUE if the
     addend is recorded with the section contents; when performing a
     partial link (ld -r) the section contents (the data) will be
     modified.  The value of this field is FALSE if addends are
     recorded with the relocation (in arelent.addend); when performing
     a partial link the relocation will be modified.
     All relocations for all ELF USE_RELA targets should set this field
     to FALSE (values of TRUE should be looked on with suspicion).
     However, the converse is not true: not all relocations of all ELF
     USE_REL targets set this field to TRUE.  Why this is so is peculiar
     to each particular target.  For relocs that aren't used in partial
     links (e.g. GOT stuff) it doesn't matter what this is set to.  */
  bfd_boolean partial_inplace;

  /* src_mask selects the part of the instruction (or data) to be used
     in the relocation sum.  If the target relocations don't have an
     addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
     dst_mask to extract the addend from the section contents.  If
     relocations do have an addend in the reloc, eg. ELF USE_RELA, this
     field should be zero.  Non-zero values for ELF USE_RELA targets are
     bogus as in those cases the value in the dst_mask part of the
     section contents should be treated as garbage.  */
  bfd_vma src_mask;

  /* dst_mask selects which parts of the instruction (or data) are
     replaced with a relocated value.  */
  bfd_vma dst_mask;

  /* When some formats create PC relative instructions, they leave
     the value of the pc of the place being relocated in the offset
     slot of the instruction, so that a PC relative relocation can
     be made just by adding in an ordinary offset (e.g., sun3 a.out).
     Some formats leave the displacement part of an instruction
     empty (e.g., m88k bcs); this flag signals the fact.  */
  bfd_boolean pcrel_offset;
};


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.1.3 The HOWTO Macro

Description
The HOWTO define is horrible and will go away.
 
#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
  { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }

Description
And will be replaced with the totally magic way. But for the moment, we are compatible, so do it this way.
 
#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
  HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
         NAME, FALSE, 0, 0, IN)

Description
This is used to fill in an empty howto entry in an array.
 
#define EMPTY_HOWTO(C) \
  HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \
         NULL, FALSE, 0, 0, FALSE)

Description
Helper routine to turn a symbol into a relocation value.
 
#define HOWTO_PREPARE(relocation, symbol)               \
  {                                                     \
    if (symbol != NULL)                                 \
      {                                                 \
        if (bfd_is_com_section (symbol->section))       \
          {                                             \
            relocation = 0;                             \
          }                                             \
        else                                            \
          {                                             \
            relocation = symbol->value;                 \
          }                                             \
      }                                                 \
  }


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.1.4 bfd_get_reloc_size

Synopsis
 
unsigned int bfd_get_reloc_size (reloc_howto_type *);
Description
For a reloc_howto_type that operates on a fixed number of bytes, this returns the number of bytes operated on.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.1.5 arelent_chain

Description
How relocs are tied together in an asection:
 
typedef struct relent_chain
{
  arelent relent;
  struct relent_chain *next;
}
arelent_chain;


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.1.6 bfd_check_overflow

Synopsis
 
bfd_reloc_status_type bfd_check_overflow
   (enum complain_overflow how,
    unsigned int bitsize,
    unsigned int rightshift,
    unsigned int addrsize,
    bfd_vma relocation);
Description
Perform overflow checking on relocation which has bitsize significant bits and will be shifted right by rightshift bits, on a machine with addresses containing addrsize significant bits. The result is either of bfd_reloc_ok or bfd_reloc_overflow.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.1.7 bfd_perform_relocation

Synopsis
 
bfd_reloc_status_type bfd_perform_relocation
   (bfd *abfd,
    arelent *reloc_entry,
    void *data,
    asection *input_section,
    bfd *output_bfd,
    char **error_message);
Description
If output_bfd is supplied to this function, the generated image will be relocatable; the relocations are copied to the output file after they have been changed to reflect the new state of the world. There are two ways of reflecting the results of partial linkage in an output file: by modifying the output data in place, and by modifying the relocation record. Some native formats (e.g., basic a.out and basic coff) have no way of specifying an addend in the relocation type, so the addend has to go in the output data. This is no big deal since in these formats the output data slot will always be big enough for the addend. Complex reloc types with addends were invented to solve just this problem. The error_message argument is set to an error message if this return bfd_reloc_dangerous.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.1.8 bfd_install_relocation

Synopsis
 
bfd_reloc_status_type bfd_install_relocation
   (bfd *abfd,
    arelent *reloc_entry,
    void *data, bfd_vma data_start,
    asection *input_section,
    char **error_message);
Description
This looks remarkably like bfd_perform_relocation, except it does not expect that the section contents have been filled in. I.e., it's suitable for use when creating, rather than applying a relocation.

For now, this function should be considered reserved for the assembler.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.2 The howto manager

When an application wants to create a relocation, but doesn't know what the target machine might call it, it can find out by using this bit of code.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.2.1 bfd_reloc_code_type

Description
The insides of a reloc code. The idea is that, eventually, there will be one enumerator for every type of relocation we ever do. Pass one of these values to bfd_reloc_type_lookup, and it'll return a howto pointer.

This does mean that the application must determine the correct enumerator value; you can't get a howto pointer from a random set of attributes.

Here are the possible values for enum bfd_reloc_code_real:

: BFD_RELOC_64
: BFD_RELOC_32
: BFD_RELOC_26
: BFD_RELOC_24
: BFD_RELOC_16
: BFD_RELOC_14
: BFD_RELOC_8
Basic absolute relocations of N bits.
: BFD_RELOC_64_PCREL
: BFD_RELOC_32_PCREL
: BFD_RELOC_24_PCREL
: BFD_RELOC_16_PCREL
: BFD_RELOC_12_PCREL
: BFD_RELOC_8_PCREL
PC-relative relocations. Sometimes these are relative to the address of the relocation itself; sometimes they are relative to the start of the section containing the relocation. It depends on the specific target.

The 24-bit relocation is used in some Intel 960 configurations.

: BFD_RELOC_32_SECREL
Section relative relocations. Some targets need this for DWARF2.
: BFD_RELOC_32_GOT_PCREL
: BFD_RELOC_16_GOT_PCREL
: BFD_RELOC_8_GOT_PCREL
: BFD_RELOC_32_GOTOFF
: BFD_RELOC_16_GOTOFF
: BFD_RELOC_LO16_GOTOFF
: BFD_RELOC_HI16_GOTOFF
: BFD_RELOC_HI16_S_GOTOFF
: BFD_RELOC_8_GOTOFF
: BFD_RELOC_64_PLT_PCREL
: BFD_RELOC_32_PLT_PCREL
: BFD_RELOC_24_PLT_PCREL
: BFD_RELOC_16_PLT_PCREL
: BFD_RELOC_8_PLT_PCREL
: BFD_RELOC_64_PLTOFF
: BFD_RELOC_32_PLTOFF
: BFD_RELOC_16_PLTOFF
: BFD_RELOC_LO16_PLTOFF
: BFD_RELOC_HI16_PLTOFF
: BFD_RELOC_HI16_S_PLTOFF
: BFD_RELOC_8_PLTOFF
For ELF.
: BFD_RELOC_SIZE32
: BFD_RELOC_SIZE64
Size relocations.
: BFD_RELOC_68K_GLOB_DAT
: BFD_RELOC_68K_JMP_SLOT
: BFD_RELOC_68K_RELATIVE
: BFD_RELOC_68K_TLS_GD32
: BFD_RELOC_68K_TLS_GD16
: BFD_RELOC_68K_TLS_GD8
: BFD_RELOC_68K_TLS_LDM32
: BFD_RELOC_68K_TLS_LDM16
: BFD_RELOC_68K_TLS_LDM8
: BFD_RELOC_68K_TLS_LDO32
: BFD_RELOC_68K_TLS_LDO16
: BFD_RELOC_68K_TLS_LDO8
: BFD_RELOC_68K_TLS_IE32
: BFD_RELOC_68K_TLS_IE16
: BFD_RELOC_68K_TLS_IE8
: BFD_RELOC_68K_TLS_LE32
: BFD_RELOC_68K_TLS_LE16
: BFD_RELOC_68K_TLS_LE8
Relocations used by 68K ELF.
: BFD_RELOC_32_BASEREL
: BFD_RELOC_16_BASEREL
: BFD_RELOC_LO16_BASEREL
: BFD_RELOC_HI16_BASEREL
: BFD_RELOC_HI16_S_BASEREL
: BFD_RELOC_8_BASEREL
: BFD_RELOC_RVA
Linkage-table relative.
: BFD_RELOC_8_FFnn
Absolute 8-bit relocation, but used to form an address like 0xFFnn.
: BFD_RELOC_32_PCREL_S2
: BFD_RELOC_16_PCREL_S2
: BFD_RELOC_23_PCREL_S2
These PC-relative relocations are stored as word displacements -- i.e., byte displacements shifted right two bits. The 30-bit word displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The signed 16-bit displacement is used on the MIPS, and the 23-bit displacement is used on the Alpha.
: BFD_RELOC_HI22
: BFD_RELOC_LO10
High 22 bits and low 10 bits of 32-bit value, placed into lower bits of the target word. These are used on the SPARC.
: BFD_RELOC_GPREL16
: BFD_RELOC_GPREL32
For systems that allocate a Global Pointer register, these are displacements off that register. These relocation types are handled specially, because the value the register will have is decided relatively late.
: BFD_RELOC_I960_CALLJ
Reloc types used for i960/b.out.
: BFD_RELOC_NONE
: BFD_RELOC_SPARC_WDISP22
: BFD_RELOC_SPARC22
: BFD_RELOC_SPARC13
: BFD_RELOC_SPARC_GOT10
: BFD_RELOC_SPARC_GOT13
: BFD_RELOC_SPARC_GOT22
: BFD_RELOC_SPARC_PC10
: BFD_RELOC_SPARC_PC22
: BFD_RELOC_SPARC_WPLT30
: BFD_RELOC_SPARC_COPY
: BFD_RELOC_SPARC_GLOB_DAT
: BFD_RELOC_SPARC_JMP_SLOT
: BFD_RELOC_SPARC_RELATIVE
: BFD_RELOC_SPARC_UA16
: BFD_RELOC_SPARC_UA32
: BFD_RELOC_SPARC_UA64
: BFD_RELOC_SPARC_GOTDATA_HIX22
: BFD_RELOC_SPARC_GOTDATA_LOX10
: BFD_RELOC_SPARC_GOTDATA_OP_HIX22
: BFD_RELOC_SPARC_GOTDATA_OP_LOX10
: BFD_RELOC_SPARC_GOTDATA_OP
: BFD_RELOC_SPARC_JMP_IREL
: BFD_RELOC_SPARC_IRELATIVE
SPARC ELF relocations. There is probably some overlap with other relocation types already defined.
: BFD_RELOC_SPARC_BASE13
: BFD_RELOC_SPARC_BASE22
I think these are specific to SPARC a.out (e.g., Sun 4).
: BFD_RELOC_SPARC_64
: BFD_RELOC_SPARC_10
: BFD_RELOC_SPARC_11
: BFD_RELOC_SPARC_OLO10
: BFD_RELOC_SPARC_HH22
: BFD_RELOC_SPARC_HM10
: BFD_RELOC_SPARC_LM22
: BFD_RELOC_SPARC_PC_HH22
: BFD_RELOC_SPARC_PC_HM10
: BFD_RELOC_SPARC_PC_LM22
: BFD_RELOC_SPARC_WDISP16
: BFD_RELOC_SPARC_WDISP19
: BFD_RELOC_SPARC_7
: BFD_RELOC_SPARC_6
: BFD_RELOC_SPARC_5
: BFD_RELOC_SPARC_DISP64
: BFD_RELOC_SPARC_PLT32
: BFD_RELOC_SPARC_PLT64
: BFD_RELOC_SPARC_HIX22
: BFD_RELOC_SPARC_LOX10
: BFD_RELOC_SPARC_H44
: BFD_RELOC_SPARC_M44
: BFD_RELOC_SPARC_L44
: BFD_RELOC_SPARC_REGISTER
: BFD_RELOC_SPARC_H34
: BFD_RELOC_SPARC_SIZE32
: BFD_RELOC_SPARC_SIZE64
: BFD_RELOC_SPARC_WDISP10
SPARC64 relocations
: BFD_RELOC_SPARC_REV32
SPARC little endian relocation
: BFD_RELOC_SPARC_TLS_GD_HI22
: BFD_RELOC_SPARC_TLS_GD_LO10
: BFD_RELOC_SPARC_TLS_GD_ADD
: BFD_RELOC_SPARC_TLS_GD_CALL
: BFD_RELOC_SPARC_TLS_LDM_HI22
: BFD_RELOC_SPARC_TLS_LDM_LO10
: BFD_RELOC_SPARC_TLS_LDM_ADD
: BFD_RELOC_SPARC_TLS_LDM_CALL
: BFD_RELOC_SPARC_TLS_LDO_HIX22
: BFD_RELOC_SPARC_TLS_LDO_LOX10
: BFD_RELOC_SPARC_TLS_LDO_ADD
: BFD_RELOC_SPARC_TLS_IE_HI22
: BFD_RELOC_SPARC_TLS_IE_LO10
: BFD_RELOC_SPARC_TLS_IE_LD
: BFD_RELOC_SPARC_TLS_IE_LDX
: BFD_RELOC_SPARC_TLS_IE_ADD
: BFD_RELOC_SPARC_TLS_LE_HIX22
: BFD_RELOC_SPARC_TLS_LE_LOX10
: BFD_RELOC_SPARC_TLS_DTPMOD32
: BFD_RELOC_SPARC_TLS_DTPMOD64
: BFD_RELOC_SPARC_TLS_DTPOFF32
: BFD_RELOC_SPARC_TLS_DTPOFF64
: BFD_RELOC_SPARC_TLS_TPOFF32
: BFD_RELOC_SPARC_TLS_TPOFF64
SPARC TLS relocations
: BFD_RELOC_SPU_IMM7
: BFD_RELOC_SPU_IMM8
: BFD_RELOC_SPU_IMM10
: BFD_RELOC_SPU_IMM10W
: BFD_RELOC_SPU_IMM16
: BFD_RELOC_SPU_IMM16W
: BFD_RELOC_SPU_IMM18
: BFD_RELOC_SPU_PCREL9a
: BFD_RELOC_SPU_PCREL9b
: BFD_RELOC_SPU_PCREL16
: BFD_RELOC_SPU_LO16
: BFD_RELOC_SPU_HI16
: BFD_RELOC_SPU_PPU32
: BFD_RELOC_SPU_PPU64
: BFD_RELOC_SPU_ADD_PIC
SPU Relocations.
: BFD_RELOC_ALPHA_GPDISP_HI16
Alpha ECOFF and ELF relocations. Some of these treat the symbol or "addend" in some special way. For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when writing; when reading, it will be the absolute section symbol. The addend is the displacement in bytes of the "lda" instruction from the "ldah" instruction (which is at the address of this reloc).
: BFD_RELOC_ALPHA_GPDISP_LO16
For GPDISP_LO16 ("ignore") relocations, the symbol is handled as with GPDISP_HI16 relocs. The addend is ignored when writing the relocations out, and is filled in with the file's GP value on reading, for convenience.
: BFD_RELOC_ALPHA_GPDISP
The ELF GPDISP relocation is exactly the same as the GPDISP_HI16 relocation except that there is no accompanying GPDISP_LO16 relocation.
: BFD_RELOC_ALPHA_LITERAL
: BFD_RELOC_ALPHA_ELF_LITERAL
: BFD_RELOC_ALPHA_LITUSE
The Alpha LITERAL/LITUSE relocs are produced by a symbol reference; the assembler turns it into a LDQ instruction to load the address of the symbol, and then fills in a register in the real instruction.

The LITERAL reloc, at the LDQ instruction, refers to the .lita section symbol. The addend is ignored when writing, but is filled in with the file's GP value on reading, for convenience, as with the GPDISP_LO16 reloc.

The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16. It should refer to the symbol to be referenced, as with 16_GOTOFF, but it generates output not based on the position within the .got section, but relative to the GP value chosen for the file during the final link stage.

The LITUSE reloc, on the instruction using the loaded address, gives information to the linker that it might be able to use to optimize away some literal section references. The symbol is ignored (read as the absolute section symbol), and the "addend" indicates the type of instruction using the register: 1 - "memory" fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target of branch)

: BFD_RELOC_ALPHA_HINT
The HINT relocation indicates a value that should be filled into the "hint" field of a jmp/jsr/ret instruction, for possible branch- prediction logic which may be provided on some processors.
: BFD_RELOC_ALPHA_LINKAGE
The LINKAGE relocation outputs a linkage pair in the object file, which is filled by the linker.
: BFD_RELOC_ALPHA_CODEADDR
The CODEADDR relocation outputs a STO_CA in the object file, which is filled by the linker.
: BFD_RELOC_ALPHA_GPREL_HI16
: BFD_RELOC_ALPHA_GPREL_LO16
The GPREL_HI/LO relocations together form a 32-bit offset from the GP register.
: BFD_RELOC_ALPHA_BRSGP
Like BFD_RELOC_23_PCREL_S2, except that the source and target must share a common GP, and the target address is adjusted for STO_ALPHA_STD_GPLOAD.
: BFD_RELOC_ALPHA_NOP
The NOP relocation outputs a NOP if the longword displacement between two procedure entry points is < 2^21.
: BFD_RELOC_ALPHA_BSR
The BSR relocation outputs a BSR if the longword displacement between two procedure entry points is < 2^21.
: BFD_RELOC_ALPHA_LDA
The LDA relocation outputs a LDA if the longword displacement between two procedure entry points is < 2^16.
: BFD_RELOC_ALPHA_BOH
The BOH relocation outputs a BSR if the longword displacement between two procedure entry points is < 2^21, or else a hint.
: BFD_RELOC_ALPHA_TLSGD
: BFD_RELOC_ALPHA_TLSLDM
: BFD_RELOC_ALPHA_DTPMOD64
: BFD_RELOC_ALPHA_GOTDTPREL16
: BFD_RELOC_ALPHA_DTPREL64
: BFD_RELOC_ALPHA_DTPREL_HI16
: BFD_RELOC_ALPHA_DTPREL_LO16
: BFD_RELOC_ALPHA_DTPREL16
: BFD_RELOC_ALPHA_GOTTPREL16
: BFD_RELOC_ALPHA_TPREL64
: BFD_RELOC_ALPHA_TPREL_HI16
: BFD_RELOC_ALPHA_TPREL_LO16
: BFD_RELOC_ALPHA_TPREL16
Alpha thread-local storage relocations.
: BFD_RELOC_MIPS_JMP
: BFD_RELOC_MICROMIPS_JMP
The MIPS jump instruction.
: BFD_RELOC_MIPS16_JMP
The MIPS16 jump instruction.
: BFD_RELOC_MIPS16_GPREL
MIPS16 GP relative reloc.
: BFD_RELOC_HI16
High 16 bits of 32-bit value; simple reloc.
: BFD_RELOC_HI16_S
High 16 bits of 32-bit value but the low 16 bits will be sign extended and added to form the final result. If the low 16 bits form a negative number, we need to add one to the high value to compensate for the borrow when the low bits are added.
: BFD_RELOC_LO16
Low 16 bits.
: BFD_RELOC_HI16_PCREL
High 16 bits of 32-bit pc-relative value
: BFD_RELOC_HI16_S_PCREL
High 16 bits of 32-bit pc-relative value, adjusted
: BFD_RELOC_LO16_PCREL
Low 16 bits of pc-relative value
: BFD_RELOC_MIPS16_GOT16
: BFD_RELOC_MIPS16_CALL16
Equivalent of BFD_RELOC_MIPS_*, but with the MIPS16 layout of 16-bit immediate fields
: BFD_RELOC_MIPS16_HI16
MIPS16 high 16 bits of 32-bit value.
: BFD_RELOC_MIPS16_HI16_S
MIPS16 high 16 bits of 32-bit value but the low 16 bits will be sign extended and added to form the final result. If the low 16 bits form a negative number, we need to add one to the high value to compensate for the borrow when the low bits are added.
: BFD_RELOC_MIPS16_LO16
MIPS16 low 16 bits.
: BFD_RELOC_MIPS16_TLS_GD
: BFD_RELOC_MIPS16_TLS_LDM
: BFD_RELOC_MIPS16_TLS_DTPREL_HI16
: BFD_RELOC_MIPS16_TLS_DTPREL_LO16
: BFD_RELOC_MIPS16_TLS_GOTTPREL
: BFD_RELOC_MIPS16_TLS_TPREL_HI16
: BFD_RELOC_MIPS16_TLS_TPREL_LO16
MIPS16 TLS relocations
: BFD_RELOC_MIPS_LITERAL
: BFD_RELOC_MICROMIPS_LITERAL
Relocation against a MIPS literal section.
: BFD_RELOC_MICROMIPS_7_PCREL_S1
: BFD_RELOC_MICROMIPS_10_PCREL_S1
: BFD_RELOC_MICROMIPS_16_PCREL_S1
microMIPS PC-relative relocations.
: BFD_RELOC_MICROMIPS_GPREL16
: BFD_RELOC_MICROMIPS_HI16
: BFD_RELOC_MICROMIPS_HI16_S
: BFD_RELOC_MICROMIPS_LO16
microMIPS versions of generic BFD relocs.
: BFD_RELOC_MIPS_GOT16
: BFD_RELOC_MICROMIPS_GOT16
: BFD_RELOC_MIPS_CALL16
: BFD_RELOC_MICROMIPS_CALL16
: BFD_RELOC_MIPS_GOT_HI16
: BFD_RELOC_MICROMIPS_GOT_HI16
: BFD_RELOC_MIPS_GOT_LO16
: BFD_RELOC_MICROMIPS_GOT_LO16
: BFD_RELOC_MIPS_CALL_HI16
: BFD_RELOC_MICROMIPS_CALL_HI16
: BFD_RELOC_MIPS_CALL_LO16
: BFD_RELOC_MICROMIPS_CALL_LO16
: BFD_RELOC_MIPS_SUB
: BFD_RELOC_MICROMIPS_SUB
: BFD_RELOC_MIPS_GOT_PAGE
: BFD_RELOC_MICROMIPS_GOT_PAGE
: BFD_RELOC_MIPS_GOT_OFST
: BFD_RELOC_MICROMIPS_GOT_OFST
: BFD_RELOC_MIPS_GOT_DISP
: BFD_RELOC_MICROMIPS_GOT_DISP
: BFD_RELOC_MIPS_SHIFT5
: BFD_RELOC_MIPS_SHIFT6
: BFD_RELOC_MIPS_INSERT_A
: BFD_RELOC_MIPS_INSERT_B
: BFD_RELOC_MIPS_DELETE
: BFD_RELOC_MIPS_HIGHEST
: BFD_RELOC_MICROMIPS_HIGHEST
: BFD_RELOC_MIPS_HIGHER
: BFD_RELOC_MICROMIPS_HIGHER
: BFD_RELOC_MIPS_SCN_DISP
: BFD_RELOC_MICROMIPS_SCN_DISP
: BFD_RELOC_MIPS_REL16
: BFD_RELOC_MIPS_RELGOT
: BFD_RELOC_MIPS_JALR
: BFD_RELOC_MICROMIPS_JALR
: BFD_RELOC_MIPS_TLS_DTPMOD32
: BFD_RELOC_MIPS_TLS_DTPREL32
: BFD_RELOC_MIPS_TLS_DTPMOD64
: BFD_RELOC_MIPS_TLS_DTPREL64
: BFD_RELOC_MIPS_TLS_GD
: BFD_RELOC_MICROMIPS_TLS_GD
: BFD_RELOC_MIPS_TLS_LDM
: BFD_RELOC_MICROMIPS_TLS_LDM
: BFD_RELOC_MIPS_TLS_DTPREL_HI16
: BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16
: BFD_RELOC_MIPS_TLS_DTPREL_LO16
: BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16
: BFD_RELOC_MIPS_TLS_GOTTPREL
: BFD_RELOC_MICROMIPS_TLS_GOTTPREL
: BFD_RELOC_MIPS_TLS_TPREL32
: BFD_RELOC_MIPS_TLS_TPREL64
: BFD_RELOC_MIPS_TLS_TPREL_HI16
: BFD_RELOC_MICROMIPS_TLS_TPREL_HI16
: BFD_RELOC_MIPS_TLS_TPREL_LO16
: BFD_RELOC_MICROMIPS_TLS_TPREL_LO16
: BFD_RELOC_MIPS_EH
MIPS ELF relocations.
: BFD_RELOC_MIPS_COPY
: BFD_RELOC_MIPS_JUMP_SLOT
MIPS ELF relocations (VxWorks and PLT extensions).
: BFD_RELOC_MOXIE_10_PCREL
Moxie ELF relocations.
: BFD_RELOC_FRV_LABEL16
: BFD_RELOC_FRV_LABEL24
: BFD_RELOC_FRV_LO16
: BFD_RELOC_FRV_HI16
: BFD_RELOC_FRV_GPREL12
: BFD_RELOC_FRV_GPRELU12
: BFD_RELOC_FRV_GPREL32
: BFD_RELOC_FRV_GPRELHI
: BFD_RELOC_FRV_GPRELLO
: BFD_RELOC_FRV_GOT12
: BFD_RELOC_FRV_GOTHI
: BFD_RELOC_FRV_GOTLO
: BFD_RELOC_FRV_FUNCDESC
: BFD_RELOC_FRV_FUNCDESC_GOT12
: BFD_RELOC_FRV_FUNCDESC_GOTHI
: BFD_RELOC_FRV_FUNCDESC_GOTLO
: BFD_RELOC_FRV_FUNCDESC_VALUE
: BFD_RELOC_FRV_FUNCDESC_GOTOFF12
: BFD_RELOC_FRV_FUNCDESC_GOTOFFHI
: BFD_RELOC_FRV_FUNCDESC_GOTOFFLO
: BFD_RELOC_FRV_GOTOFF12
: BFD_RELOC_FRV_GOTOFFHI
: BFD_RELOC_FRV_GOTOFFLO
: BFD_RELOC_FRV_GETTLSOFF
: BFD_RELOC_FRV_TLSDESC_VALUE
: BFD_RELOC_FRV_GOTTLSDESC12
: BFD_RELOC_FRV_GOTTLSDESCHI
: BFD_RELOC_FRV_GOTTLSDESCLO
: BFD_RELOC_FRV_TLSMOFF12
: BFD_RELOC_FRV_TLSMOFFHI
: BFD_RELOC_FRV_TLSMOFFLO
: BFD_RELOC_FRV_GOTTLSOFF12
: BFD_RELOC_FRV_GOTTLSOFFHI
: BFD_RELOC_FRV_GOTTLSOFFLO
: BFD_RELOC_FRV_TLSOFF
: BFD_RELOC_FRV_TLSDESC_RELAX
: BFD_RELOC_FRV_GETTLSOFF_RELAX
: BFD_RELOC_FRV_TLSOFF_RELAX
: BFD_RELOC_FRV_TLSMOFF
Fujitsu Frv Relocations.
: BFD_RELOC_MN10300_GOTOFF24
This is a 24bit GOT-relative reloc for the mn10300.
: BFD_RELOC_MN10300_GOT32
This is a 32bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction.
: BFD_RELOC_MN10300_GOT24
This is a 24bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction.
: BFD_RELOC_MN10300_GOT16
This is a 16bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction.
: BFD_RELOC_MN10300_COPY
Copy symbol at runtime.
: BFD_RELOC_MN10300_GLOB_DAT
Create GOT entry.
: BFD_RELOC_MN10300_JMP_SLOT
Create PLT entry.
: BFD_RELOC_MN10300_RELATIVE
Adjust by program base.
: BFD_RELOC_MN10300_SYM_DIFF
Together with another reloc targeted at the same location, allows for a value that is the difference of two symbols in the same section.
: BFD_RELOC_MN10300_ALIGN
The addend of this reloc is an alignment power that must be honoured at the offset's location, regardless of linker relaxation.
: BFD_RELOC_MN10300_TLS_GD
: BFD_RELOC_MN10300_TLS_LD
: BFD_RELOC_MN10300_TLS_LDO
: BFD_RELOC_MN10300_TLS_GOTIE
: BFD_RELOC_MN10300_TLS_IE
: BFD_RELOC_MN10300_TLS_LE
: BFD_RELOC_MN10300_TLS_DTPMOD
: BFD_RELOC_MN10300_TLS_DTPOFF
: BFD_RELOC_MN10300_TLS_TPOFF
Various TLS-related relocations.
: BFD_RELOC_MN10300_32_PCREL
This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the instruction.
: BFD_RELOC_MN10300_16_PCREL
This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the instruction.
: BFD_RELOC_386_GOT32
: BFD_RELOC_386_PLT32
: BFD_RELOC_386_COPY
: BFD_RELOC_386_GLOB_DAT
: BFD_RELOC_386_JUMP_SLOT
: BFD_RELOC_386_RELATIVE
: BFD_RELOC_386_GOTOFF
: BFD_RELOC_386_GOTPC
: BFD_RELOC_386_TLS_TPOFF
: BFD_RELOC_386_TLS_IE
: BFD_RELOC_386_TLS_GOTIE
: BFD_RELOC_386_TLS_LE
: BFD_RELOC_386_TLS_GD
: BFD_RELOC_386_TLS_LDM
: BFD_RELOC_386_TLS_LDO_32
: BFD_RELOC_386_TLS_IE_32
: BFD_RELOC_386_TLS_LE_32
: BFD_RELOC_386_TLS_DTPMOD32
: BFD_RELOC_386_TLS_DTPOFF32
: BFD_RELOC_386_TLS_TPOFF32
: BFD_RELOC_386_TLS_GOTDESC
: BFD_RELOC_386_TLS_DESC_CALL
: BFD_RELOC_386_TLS_DESC
: BFD_RELOC_386_IRELATIVE
i386/elf relocations
: BFD_RELOC_X86_64_GOT32
: BFD_RELOC_X86_64_PLT32
: BFD_RELOC_X86_64_COPY
: BFD_RELOC_X86_64_GLOB_DAT
: BFD_RELOC_X86_64_JUMP_SLOT
: BFD_RELOC_X86_64_RELATIVE
: BFD_RELOC_X86_64_GOTPCREL
: BFD_RELOC_X86_64_32S
: BFD_RELOC_X86_64_DTPMOD64
: BFD_RELOC_X86_64_DTPOFF64
: BFD_RELOC_X86_64_TPOFF64
: BFD_RELOC_X86_64_TLSGD
: BFD_RELOC_X86_64_TLSLD
: BFD_RELOC_X86_64_DTPOFF32
: BFD_RELOC_X86_64_GOTTPOFF
: BFD_RELOC_X86_64_TPOFF32
: BFD_RELOC_X86_64_GOTOFF64
: BFD_RELOC_X86_64_GOTPC32
: BFD_RELOC_X86_64_GOT64
: BFD_RELOC_X86_64_GOTPCREL64
: BFD_RELOC_X86_64_GOTPC64
: BFD_RELOC_X86_64_GOTPLT64
: BFD_RELOC_X86_64_PLTOFF64
: BFD_RELOC_X86_64_GOTPC32_TLSDESC
: BFD_RELOC_X86_64_TLSDESC_CALL
: BFD_RELOC_X86_64_TLSDESC
: BFD_RELOC_X86_64_IRELATIVE
: BFD_RELOC_X86_64_PC32_BND
: BFD_RELOC_X86_64_PLT32_BND
x86-64/elf relocations
: BFD_RELOC_NS32K_IMM_8
: BFD_RELOC_NS32K_IMM_16
: BFD_RELOC_NS32K_IMM_32
: BFD_RELOC_NS32K_IMM_8_PCREL
: BFD_RELOC_NS32K_IMM_16_PCREL
: BFD_RELOC_NS32K_IMM_32_PCREL
: BFD_RELOC_NS32K_DISP_8
: BFD_RELOC_NS32K_DISP_16
: BFD_RELOC_NS32K_DISP_32
: BFD_RELOC_NS32K_DISP_8_PCREL
: BFD_RELOC_NS32K_DISP_16_PCREL
: BFD_RELOC_NS32K_DISP_32_PCREL
ns32k relocations
: BFD_RELOC_PDP11_DISP_8_PCREL
: BFD_RELOC_PDP11_DISP_6_PCREL
PDP11 relocations
: BFD_RELOC_PJ_CODE_HI16
: BFD_RELOC_PJ_CODE_LO16
: BFD_RELOC_PJ_CODE_DIR16
: BFD_RELOC_PJ_CODE_DIR32
: BFD_RELOC_PJ_CODE_REL16
: BFD_RELOC_PJ_CODE_REL32
Picojava relocs. Not all of these appear in object files.
: BFD_RELOC_PPC_B26
: BFD_RELOC_PPC_BA26
: BFD_RELOC_PPC_TOC16
: BFD_RELOC_PPC_B16
: BFD_RELOC_PPC_B16_BRTAKEN
: BFD_RELOC_PPC_B16_BRNTAKEN
: BFD_RELOC_PPC_BA16
: BFD_RELOC_PPC_BA16_BRTAKEN
: BFD_RELOC_PPC_BA16_BRNTAKEN
: BFD_RELOC_PPC_COPY
: BFD_RELOC_PPC_GLOB_DAT
: BFD_RELOC_PPC_JMP_SLOT
: BFD_RELOC_PPC_RELATIVE
: BFD_RELOC_PPC_LOCAL24PC
: BFD_RELOC_PPC_EMB_NADDR32
: BFD_RELOC_PPC_EMB_NADDR16
: BFD_RELOC_PPC_EMB_NADDR16_LO
: BFD_RELOC_PPC_EMB_NADDR16_HI
: BFD_RELOC_PPC_EMB_NADDR16_HA
: BFD_RELOC_PPC_EMB_SDAI16
: BFD_RELOC_PPC_EMB_SDA2I16
: BFD_RELOC_PPC_EMB_SDA2REL
: BFD_RELOC_PPC_EMB_SDA21
: BFD_RELOC_PPC_EMB_MRKREF
: BFD_RELOC_PPC_EMB_RELSEC16
: BFD_RELOC_PPC_EMB_RELST_LO
: BFD_RELOC_PPC_EMB_RELST_HI
: BFD_RELOC_PPC_EMB_RELST_HA
: BFD_RELOC_PPC_EMB_BIT_FLD
: BFD_RELOC_PPC_EMB_RELSDA
: BFD_RELOC_PPC_VLE_REL8
: BFD_RELOC_PPC_VLE_REL15
: BFD_RELOC_PPC_VLE_REL24
: BFD_RELOC_PPC_VLE_LO16A
: BFD_RELOC_PPC_VLE_LO16D
: BFD_RELOC_PPC_VLE_HI16A
: BFD_RELOC_PPC_VLE_HI16D
: BFD_RELOC_PPC_VLE_HA16A
: BFD_RELOC_PPC_VLE_HA16D
: BFD_RELOC_PPC_VLE_SDA21
: BFD_RELOC_PPC_VLE_SDA21_LO
: BFD_RELOC_PPC_VLE_SDAREL_LO16A
: BFD_RELOC_PPC_VLE_SDAREL_LO16D
: BFD_RELOC_PPC_VLE_SDAREL_HI16A
: BFD_RELOC_PPC_VLE_SDAREL_HI16D
: BFD_RELOC_PPC_VLE_SDAREL_HA16A
: BFD_RELOC_PPC_VLE_SDAREL_HA16D
: BFD_RELOC_PPC64_HIGHER
: BFD_RELOC_PPC64_HIGHER_S
: BFD_RELOC_PPC64_HIGHEST
: BFD_RELOC_PPC64_HIGHEST_S
: BFD_RELOC_PPC64_TOC16_LO
: BFD_RELOC_PPC64_TOC16_HI
: BFD_RELOC_PPC64_TOC16_HA
: BFD_RELOC_PPC64_TOC
: BFD_RELOC_PPC64_PLTGOT16
: BFD_RELOC_PPC64_PLTGOT16_LO
: BFD_RELOC_PPC64_PLTGOT16_HI
: BFD_RELOC_PPC64_PLTGOT16_HA
: BFD_RELOC_PPC64_ADDR16_DS
: BFD_RELOC_PPC64_ADDR16_LO_DS
: BFD_RELOC_PPC64_GOT16_DS
: BFD_RELOC_PPC64_GOT16_LO_DS
: BFD_RELOC_PPC64_PLT16_LO_DS
: BFD_RELOC_PPC64_SECTOFF_DS
: BFD_RELOC_PPC64_SECTOFF_LO_DS
: BFD_RELOC_PPC64_TOC16_DS
: BFD_RELOC_PPC64_TOC16_LO_DS
: BFD_RELOC_PPC64_PLTGOT16_DS
: BFD_RELOC_PPC64_PLTGOT16_LO_DS
: BFD_RELOC_PPC64_ADDR16_HIGH
: BFD_RELOC_PPC64_ADDR16_HIGHA
Power(rs6000) and PowerPC relocations.
: BFD_RELOC_PPC_TLS
: BFD_RELOC_PPC_TLSGD
: BFD_RELOC_PPC_TLSLD
: BFD_RELOC_PPC_DTPMOD
: BFD_RELOC_PPC_TPREL16
: BFD_RELOC_PPC_TPREL16_LO
: BFD_RELOC_PPC_TPREL16_HI
: BFD_RELOC_PPC_TPREL16_HA
: BFD_RELOC_PPC_TPREL
: BFD_RELOC_PPC_DTPREL16
: BFD_RELOC_PPC_DTPREL16_LO
: BFD_RELOC_PPC_DTPREL16_HI
: BFD_RELOC_PPC_DTPREL16_HA
: BFD_RELOC_PPC_DTPREL
: BFD_RELOC_PPC_GOT_TLSGD16
: BFD_RELOC_PPC_GOT_TLSGD16_LO
: BFD_RELOC_PPC_GOT_TLSGD16_HI
: BFD_RELOC_PPC_GOT_TLSGD16_HA
: BFD_RELOC_PPC_GOT_TLSLD16
: BFD_RELOC_PPC_GOT_TLSLD16_LO
: BFD_RELOC_PPC_GOT_TLSLD16_HI
: BFD_RELOC_PPC_GOT_TLSLD16_HA
: BFD_RELOC_PPC_GOT_TPREL16
: BFD_RELOC_PPC_GOT_TPREL16_LO
: BFD_RELOC_PPC_GOT_TPREL16_HI
: BFD_RELOC_PPC_GOT_TPREL16_HA
: BFD_RELOC_PPC_GOT_DTPREL16
: BFD_RELOC_PPC_GOT_DTPREL16_LO
: BFD_RELOC_PPC_GOT_DTPREL16_HI
: BFD_RELOC_PPC_GOT_DTPREL16_HA
: BFD_RELOC_PPC64_TPREL16_DS
: BFD_RELOC_PPC64_TPREL16_LO_DS
: BFD_RELOC_PPC64_TPREL16_HIGHER
: BFD_RELOC_PPC64_TPREL16_HIGHERA
: BFD_RELOC_PPC64_TPREL16_HIGHEST
: BFD_RELOC_PPC64_TPREL16_HIGHESTA
: BFD_RELOC_PPC64_DTPREL16_DS
: BFD_RELOC_PPC64_DTPREL16_LO_DS
: BFD_RELOC_PPC64_DTPREL16_HIGHER
: BFD_RELOC_PPC64_DTPREL16_HIGHERA
: BFD_RELOC_PPC64_DTPREL16_HIGHEST
: BFD_RELOC_PPC64_DTPREL16_HIGHESTA
: BFD_RELOC_PPC64_TPREL16_HIGH
: BFD_RELOC_PPC64_TPREL16_HIGHA
: BFD_RELOC_PPC64_DTPREL16_HIGH
: BFD_RELOC_PPC64_DTPREL16_HIGHA
PowerPC and PowerPC64 thread-local storage relocations.
: BFD_RELOC_I370_D12
IBM 370/390 relocations
: BFD_RELOC_CTOR
The type of reloc used to build a constructor table - at the moment probably a 32 bit wide absolute relocation, but the target can choose. It generally does map to one of the other relocation types.
: BFD_RELOC_ARM_PCREL_BRANCH
ARM 26 bit pc-relative branch. The lowest two bits must be zero and are not stored in the instruction.
: BFD_RELOC_ARM_PCREL_BLX
ARM 26 bit pc-relative branch. The lowest bit must be zero and is not stored in the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction.
: BFD_RELOC_THUMB_PCREL_BLX
Thumb 22 bit pc-relative branch. The lowest bit must be zero and is not stored in the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction.
: BFD_RELOC_ARM_PCREL_CALL
ARM 26-bit pc-relative branch for an unconditional BL or BLX instruction.
: BFD_RELOC_ARM_PCREL_JUMP
ARM 26-bit pc-relative branch for B or conditional BL instruction.
: BFD_RELOC_THUMB_PCREL_BRANCH7
: BFD_RELOC_THUMB_PCREL_BRANCH9
: BFD_RELOC_THUMB_PCREL_BRANCH12
: BFD_RELOC_THUMB_PCREL_BRANCH20
: BFD_RELOC_THUMB_PCREL_BRANCH23
: BFD_RELOC_THUMB_PCREL_BRANCH25
Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. The lowest bit must be zero and is not stored in the instruction. Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an "nn" one smaller in all cases. Note further that BRANCH23 corresponds to R_ARM_THM_CALL.
: BFD_RELOC_ARM_OFFSET_IMM
12-bit immediate offset, used in ARM-format ldr and str instructions.
: BFD_RELOC_ARM_THUMB_OFFSET
5-bit immediate offset, used in Thumb-format ldr and str instructions.
: BFD_RELOC_ARM_TARGET1
Pc-relative or absolute relocation depending on target. Used for entries in .init_array sections.
: BFD_RELOC_ARM_ROSEGREL32
Read-only segment base relative address.
: BFD_RELOC_ARM_SBREL32
Data segment base relative address.
: BFD_RELOC_ARM_TARGET2
This reloc is used for references to RTTI data from exception handling tables. The actual definition depends on the target. It may be a pc-relative or some form of GOT-indirect relocation.
: BFD_RELOC_ARM_PREL31
31-bit PC relative address.
: BFD_RELOC_ARM_MOVW
: BFD_RELOC_ARM_MOVT
: BFD_RELOC_ARM_MOVW_PCREL
: BFD_RELOC_ARM_MOVT_PCREL
: BFD_RELOC_ARM_THUMB_MOVW
: BFD_RELOC_ARM_THUMB_MOVT
: BFD_RELOC_ARM_THUMB_MOVW_PCREL
: BFD_RELOC_ARM_THUMB_MOVT_PCREL
Low and High halfword relocations for MOVW and MOVT instructions.
: BFD_RELOC_ARM_JUMP_SLOT
: BFD_RELOC_ARM_GLOB_DAT
: BFD_RELOC_ARM_GOT32
: BFD_RELOC_ARM_PLT32
: BFD_RELOC_ARM_RELATIVE
: BFD_RELOC_ARM_GOTOFF
: BFD_RELOC_ARM_GOTPC
: BFD_RELOC_ARM_GOT_PREL
Relocations for setting up GOTs and PLTs for shared libraries.
: BFD_RELOC_ARM_TLS_GD32
: BFD_RELOC_ARM_TLS_LDO32
: BFD_RELOC_ARM_TLS_LDM32
: BFD_RELOC_ARM_TLS_DTPOFF32
: BFD_RELOC_ARM_TLS_DTPMOD32
: BFD_RELOC_ARM_TLS_TPOFF32
: BFD_RELOC_ARM_TLS_IE32
: BFD_RELOC_ARM_TLS_LE32
: BFD_RELOC_ARM_TLS_GOTDESC
: BFD_RELOC_ARM_TLS_CALL
: BFD_RELOC_ARM_THM_TLS_CALL
: BFD_RELOC_ARM_TLS_DESCSEQ
: BFD_RELOC_ARM_THM_TLS_DESCSEQ
: BFD_RELOC_ARM_TLS_DESC
ARM thread-local storage relocations.
: BFD_RELOC_ARM_ALU_PC_G0_NC
: BFD_RELOC_ARM_ALU_PC_G0
: BFD_RELOC_ARM_ALU_PC_G1_NC
: BFD_RELOC_ARM_ALU_PC_G1
: BFD_RELOC_ARM_ALU_PC_G2
: BFD_RELOC_ARM_LDR_PC_G0
: BFD_RELOC_ARM_LDR_PC_G1
: BFD_RELOC_ARM_LDR_PC_G2
: BFD_RELOC_ARM_LDRS_PC_G0
: BFD_RELOC_ARM_LDRS_PC_G1
: BFD_RELOC_ARM_LDRS_PC_G2
: BFD_RELOC_ARM_LDC_PC_G0
: BFD_RELOC_ARM_LDC_PC_G1
: BFD_RELOC_ARM_LDC_PC_G2
: BFD_RELOC_ARM_ALU_SB_G0_NC
: BFD_RELOC_ARM_ALU_SB_G0
: BFD_RELOC_ARM_ALU_SB_G1_NC
: BFD_RELOC_ARM_ALU_SB_G1
: BFD_RELOC_ARM_ALU_SB_G2
: BFD_RELOC_ARM_LDR_SB_G0
: BFD_RELOC_ARM_LDR_SB_G1
: BFD_RELOC_ARM_LDR_SB_G2
: BFD_RELOC_ARM_LDRS_SB_G0
: BFD_RELOC_ARM_LDRS_SB_G1
: BFD_RELOC_ARM_LDRS_SB_G2
: BFD_RELOC_ARM_LDC_SB_G0
: BFD_RELOC_ARM_LDC_SB_G1
: BFD_RELOC_ARM_LDC_SB_G2
ARM group relocations.
: BFD_RELOC_ARM_V4BX
Annotation of BX instructions.
: BFD_RELOC_ARM_IRELATIVE
ARM support for STT_GNU_IFUNC.
: BFD_RELOC_ARM_IMMEDIATE
: BFD_RELOC_ARM_ADRL_IMMEDIATE
: BFD_RELOC_ARM_T32_IMMEDIATE
: BFD_RELOC_ARM_T32_ADD_IMM
: BFD_RELOC_ARM_T32_IMM12
: BFD_RELOC_ARM_T32_ADD_PC12
: BFD_RELOC_ARM_SHIFT_IMM
: BFD_RELOC_ARM_SMC
: BFD_RELOC_ARM_HVC
: BFD_RELOC_ARM_SWI
: BFD_RELOC_ARM_MULTI
: BFD_RELOC_ARM_CP_OFF_IMM
: BFD_RELOC_ARM_CP_OFF_IMM_S2
: BFD_RELOC_ARM_T32_CP_OFF_IMM
: BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
: BFD_RELOC_ARM_ADR_IMM
: BFD_RELOC_ARM_LDR_IMM
: BFD_RELOC_ARM_LITERAL
: BFD_RELOC_ARM_IN_POOL
: BFD_RELOC_ARM_OFFSET_IMM8
: BFD_RELOC_ARM_T32_OFFSET_U8
: BFD_RELOC_ARM_T32_OFFSET_IMM
: BFD_RELOC_ARM_HWLITERAL
: BFD_RELOC_ARM_THUMB_ADD
: BFD_RELOC_ARM_THUMB_IMM
: BFD_RELOC_ARM_THUMB_SHIFT
These relocs are only used within the ARM assembler. They are not (at present) written to any object files.
: BFD_RELOC_SH_PCDISP8BY2
: BFD_RELOC_SH_PCDISP12BY2
: BFD_RELOC_SH_IMM3
: BFD_RELOC_SH_IMM3U
: BFD_RELOC_SH_DISP12
: BFD_RELOC_SH_DISP12BY2
: BFD_RELOC_SH_DISP12BY4
: BFD_RELOC_SH_DISP12BY8
: BFD_RELOC_SH_DISP20
: BFD_RELOC_SH_DISP20BY8
: BFD_RELOC_SH_IMM4
: BFD_RELOC_SH_IMM4BY2
: BFD_RELOC_SH_IMM4BY4
: BFD_RELOC_SH_IMM8
: BFD_RELOC_SH_IMM8BY2
: BFD_RELOC_SH_IMM8BY4
: BFD_RELOC_SH_PCRELIMM8BY2
: BFD_RELOC_SH_PCRELIMM8BY4
: BFD_RELOC_SH_SWITCH16
: BFD_RELOC_SH_SWITCH32
: BFD_RELOC_SH_USES
: BFD_RELOC_SH_COUNT
: BFD_RELOC_SH_ALIGN
: BFD_RELOC_SH_CODE
: BFD_RELOC_SH_DATA
: BFD_RELOC_SH_LABEL
: BFD_RELOC_SH_LOOP_START
: BFD_RELOC_SH_LOOP_END
: BFD_RELOC_SH_COPY
: BFD_RELOC_SH_GLOB_DAT
: BFD_RELOC_SH_JMP_SLOT
: BFD_RELOC_SH_RELATIVE
: BFD_RELOC_SH_GOTPC
: BFD_RELOC_SH_GOT_LOW16
: BFD_RELOC_SH_GOT_MEDLOW16
: BFD_RELOC_SH_GOT_MEDHI16
: BFD_RELOC_SH_GOT_HI16
: BFD_RELOC_SH_GOTPLT_LOW16
: BFD_RELOC_SH_GOTPLT_MEDLOW16
: BFD_RELOC_SH_GOTPLT_MEDHI16
: BFD_RELOC_SH_GOTPLT_HI16
: BFD_RELOC_SH_PLT_LOW16
: BFD_RELOC_SH_PLT_MEDLOW16
: BFD_RELOC_SH_PLT_MEDHI16
: BFD_RELOC_SH_PLT_HI16
: BFD_RELOC_SH_GOTOFF_LOW16
: BFD_RELOC_SH_GOTOFF_MEDLOW16
: BFD_RELOC_SH_GOTOFF_MEDHI16
: BFD_RELOC_SH_GOTOFF_HI16
: BFD_RELOC_SH_GOTPC_LOW16
: BFD_RELOC_SH_GOTPC_MEDLOW16
: BFD_RELOC_SH_GOTPC_MEDHI16
: BFD_RELOC_SH_GOTPC_HI16
: BFD_RELOC_SH_COPY64
: BFD_RELOC_SH_GLOB_DAT64
: BFD_RELOC_SH_JMP_SLOT64
: BFD_RELOC_SH_RELATIVE64
: BFD_RELOC_SH_GOT10BY4
: BFD_RELOC_SH_GOT10BY8
: BFD_RELOC_SH_GOTPLT10BY4
: BFD_RELOC_SH_GOTPLT10BY8
: BFD_RELOC_SH_GOTPLT32
: BFD_RELOC_SH_SHMEDIA_CODE
: BFD_RELOC_SH_IMMU5
: BFD_RELOC_SH_IMMS6
: BFD_RELOC_SH_IMMS6BY32
: BFD_RELOC_SH_IMMU6
: BFD_RELOC_SH_IMMS10
: BFD_RELOC_SH_IMMS10BY2
: BFD_RELOC_SH_IMMS10BY4
: BFD_RELOC_SH_IMMS10BY8
: BFD_RELOC_SH_IMMS16
: BFD_RELOC_SH_IMMU16
: BFD_RELOC_SH_IMM_LOW16
: BFD_RELOC_SH_IMM_LOW16_PCREL
: BFD_RELOC_SH_IMM_MEDLOW16
: BFD_RELOC_SH_IMM_MEDLOW16_PCREL
: BFD_RELOC_SH_IMM_MEDHI16
: BFD_RELOC_SH_IMM_MEDHI16_PCREL
: BFD_RELOC_SH_IMM_HI16
: BFD_RELOC_SH_IMM_HI16_PCREL
: BFD_RELOC_SH_PT_16
: BFD_RELOC_SH_TLS_GD_32
: BFD_RELOC_SH_TLS_LD_32
: BFD_RELOC_SH_TLS_LDO_32
: BFD_RELOC_SH_TLS_IE_32
: BFD_RELOC_SH_TLS_LE_32
: BFD_RELOC_SH_TLS_DTPMOD32
: BFD_RELOC_SH_TLS_DTPOFF32
: BFD_RELOC_SH_TLS_TPOFF32
: BFD_RELOC_SH_GOT20
: BFD_RELOC_SH_GOTOFF20
: BFD_RELOC_SH_GOTFUNCDESC
: BFD_RELOC_SH_GOTFUNCDESC20
: BFD_RELOC_SH_GOTOFFFUNCDESC
: BFD_RELOC_SH_GOTOFFFUNCDESC20
: BFD_RELOC_SH_FUNCDESC
Renesas / SuperH SH relocs. Not all of these appear in object files.
: BFD_RELOC_ARC_B22_PCREL
ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two bits must be zero and are not stored in the instruction. The high 20 bits are installed in bits 26 through 7 of the instruction.
: BFD_RELOC_ARC_B26
ARC 26 bit absolute branch. The lowest two bits must be zero and are not stored in the instruction. The high 24 bits are installed in bits 23 through 0.
: BFD_RELOC_BFIN_16_IMM
ADI Blackfin 16 bit immediate absolute reloc.
: BFD_RELOC_BFIN_16_HIGH
ADI Blackfin 16 bit immediate absolute reloc higher 16 bits.
: BFD_RELOC_BFIN_4_PCREL
ADI Blackfin 'a' part of LSETUP.
: BFD_RELOC_BFIN_5_PCREL
ADI Blackfin.
: BFD_RELOC_BFIN_16_LOW
ADI Blackfin 16 bit immediate absolute reloc lower 16 bits.
: BFD_RELOC_BFIN_10_PCREL
ADI Blackfin.
: BFD_RELOC_BFIN_11_PCREL
ADI Blackfin 'b' part of LSETUP.
: BFD_RELOC_BFIN_12_PCREL_JUMP
ADI Blackfin.
: BFD_RELOC_BFIN_12_PCREL_JUMP_S
ADI Blackfin Short jump, pcrel.
: BFD_RELOC_BFIN_24_PCREL_CALL_X
ADI Blackfin Call.x not implemented.
: BFD_RELOC_BFIN_24_PCREL_JUMP_L
ADI Blackfin Long Jump pcrel.
: BFD_RELOC_BFIN_GOT17M4
: BFD_RELOC_BFIN_GOTHI
: BFD_RELOC_BFIN_GOTLO
: BFD_RELOC_BFIN_FUNCDESC
: BFD_RELOC_BFIN_FUNCDESC_GOT17M4
: BFD_RELOC_BFIN_FUNCDESC_GOTHI
: BFD_RELOC_BFIN_FUNCDESC_GOTLO
: BFD_RELOC_BFIN_FUNCDESC_VALUE
: BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4
: BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI
: BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO
: BFD_RELOC_BFIN_GOTOFF17M4
: BFD_RELOC_BFIN_GOTOFFHI
: BFD_RELOC_BFIN_GOTOFFLO
ADI Blackfin FD-PIC relocations.
: BFD_RELOC_BFIN_GOT
ADI Blackfin GOT relocation.
: BFD_RELOC_BFIN_PLTPC
ADI Blackfin PLTPC relocation.
: BFD_ARELOC_BFIN_PUSH
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_CONST
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_ADD
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_SUB
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_MULT
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_DIV
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_MOD
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_LSHIFT
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_RSHIFT
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_AND
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_OR
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_XOR
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_LAND
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_LOR
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_LEN
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_NEG
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_COMP
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_PAGE
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_HWPAGE
ADI Blackfin arithmetic relocation.
: BFD_ARELOC_BFIN_ADDR
ADI Blackfin arithmetic relocation.
: BFD_RELOC_D10V_10_PCREL_R
Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0.
: BFD_RELOC_D10V_10_PCREL_L
Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0. This is the same as the previous reloc except it is in the left container, i.e., shifted left 15 bits.
: BFD_RELOC_D10V_18
This is an 18-bit reloc with the right 2 bits assumed to be 0.
: BFD_RELOC_D10V_18_PCREL
This is an 18-bit reloc with the right 2 bits assumed to be 0.
: BFD_RELOC_D30V_6
Mitsubishi D30V relocs. This is a 6-bit absolute reloc.
: BFD_RELOC_D30V_9_PCREL
This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0.
: BFD_RELOC_D30V_9_PCREL_R
This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container.
: BFD_RELOC_D30V_15
This is a 12-bit absolute reloc with the right 3 bitsassumed to be 0.
: BFD_RELOC_D30V_15_PCREL
This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0.
: BFD_RELOC_D30V_15_PCREL_R
This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container.
: BFD_RELOC_D30V_21
This is an 18-bit absolute reloc with the right 3 bits assumed to be 0.
: BFD_RELOC_D30V_21_PCREL
This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0.
: BFD_RELOC_D30V_21_PCREL_R
This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container.
: BFD_RELOC_D30V_32
This is a 32-bit absolute reloc.
: BFD_RELOC_D30V_32_PCREL
This is a 32-bit pc-relative reloc.
: BFD_RELOC_DLX_HI16_S
DLX relocs
: BFD_RELOC_DLX_LO16
DLX relocs
: BFD_RELOC_DLX_JMP26
DLX relocs
: BFD_RELOC_M32C_HI8
: BFD_RELOC_M32C_RL_JUMP
: BFD_RELOC_M32C_RL_1ADDR
: BFD_RELOC_M32C_RL_2ADDR
Renesas M16C/M32C Relocations.
: BFD_RELOC_M32R_24
Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit absolute address.
: BFD_RELOC_M32R_10_PCREL
This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
: BFD_RELOC_M32R_18_PCREL
This is an 18-bit reloc with the right 2 bits assumed to be 0.
: BFD_RELOC_M32R_26_PCREL
This is a 26-bit reloc with the right 2 bits assumed to be 0.
: BFD_RELOC_M32R_HI16_ULO
This is a 16-bit reloc containing the high 16 bits of an address used when the lower 16 bits are treated as unsigned.
: BFD_RELOC_M32R_HI16_SLO
This is a 16-bit reloc containing the high 16 bits of an address used when the lower 16 bits are treated as signed.
: BFD_RELOC_M32R_LO16
This is a 16-bit reloc containing the lower 16 bits of an address.
: BFD_RELOC_M32R_SDA16
This is a 16-bit reloc containing the small data area offset for use in add3, load, and store instructions.
: BFD_RELOC_M32R_GOT24
: BFD_RELOC_M32R_26_PLTREL
: BFD_RELOC_M32R_COPY
: BFD_RELOC_M32R_GLOB_DAT
: BFD_RELOC_M32R_JMP_SLOT
: BFD_RELOC_M32R_RELATIVE
: BFD_RELOC_M32R_GOTOFF
: BFD_RELOC_M32R_GOTOFF_HI_ULO
: BFD_RELOC_M32R_GOTOFF_HI_SLO
: BFD_RELOC_M32R_GOTOFF_LO
: BFD_RELOC_M32R_GOTPC24
: BFD_RELOC_M32R_GOT16_HI_ULO
: BFD_RELOC_M32R_GOT16_HI_SLO
: BFD_RELOC_M32R_GOT16_LO
: BFD_RELOC_M32R_GOTPC_HI_ULO
: BFD_RELOC_M32R_GOTPC_HI_SLO
: BFD_RELOC_M32R_GOTPC_LO
For PIC.
: BFD_RELOC_V850_9_PCREL
This is a 9-bit reloc
: BFD_RELOC_V850_22_PCREL
This is a 22-bit reloc
: BFD_RELOC_V850_SDA_16_16_OFFSET
This is a 16 bit offset from the short data area pointer.
: BFD_RELOC_V850_SDA_15_16_OFFSET
This is a 16 bit offset (of which only 15 bits are used) from the short data area pointer.
: BFD_RELOC_V850_ZDA_16_16_OFFSET
This is a 16 bit offset from the zero data area pointer.
: BFD_RELOC_V850_ZDA_15_16_OFFSET
This is a 16 bit offset (of which only 15 bits are used) from the zero data area pointer.
: BFD_RELOC_V850_TDA_6_8_OFFSET
This is an 8 bit offset (of which only 6 bits are used) from the tiny data area pointer.
: BFD_RELOC_V850_TDA_7_8_OFFSET
This is an 8bit offset (of which only 7 bits are used) from the tiny data area pointer.
: BFD_RELOC_V850_TDA_7_7_OFFSET
This is a 7 bit offset from the tiny data area pointer.
: BFD_RELOC_V850_TDA_16_16_OFFSET
This is a 16 bit offset from the tiny data area pointer.
: BFD_RELOC_V850_TDA_4_5_OFFSET
This is a 5 bit offset (of which only 4 bits are used) from the tiny data area pointer.
: BFD_RELOC_V850_TDA_4_4_OFFSET
This is a 4 bit offset from the tiny data area pointer.
: BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
This is a 16 bit offset from the short data area pointer, with the bits placed non-contiguously in the instruction.
: BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
This is a 16 bit offset from the zero data area pointer, with the bits placed non-contiguously in the instruction.
: BFD_RELOC_V850_CALLT_6_7_OFFSET
This is a 6 bit offset from the call table base pointer.
: BFD_RELOC_V850_CALLT_16_16_OFFSET
This is a 16 bit offset from the call table base pointer.
: BFD_RELOC_V850_LONGCALL
Used for relaxing indirect function calls.
: BFD_RELOC_V850_LONGJUMP
Used for relaxing indirect jumps.
: BFD_RELOC_V850_ALIGN
Used to maintain alignment whilst relaxing.
: BFD_RELOC_V850_LO16_SPLIT_OFFSET
This is a variation of BFD_RELOC_LO16 that can be used in v850e ld.bu instructions.
: BFD_RELOC_V850_16_PCREL
This is a 16-bit reloc.
: BFD_RELOC_V850_17_PCREL
This is a 17-bit reloc.
: BFD_RELOC_V850_23
This is a 23-bit reloc.
: BFD_RELOC_V850_32_PCREL
This is a 32-bit reloc.
: BFD_RELOC_V850_32_ABS
This is a 32-bit reloc.
: BFD_RELOC_V850_16_SPLIT_OFFSET
This is a 16-bit reloc.
: BFD_RELOC_V850_16_S1
This is a 16-bit reloc.
: BFD_RELOC_V850_LO16_S1
Low 16 bits. 16 bit shifted by 1.
: BFD_RELOC_V850_CALLT_15_16_OFFSET
This is a 16 bit offset from the call table base pointer.
: BFD_RELOC_V850_32_GOTPCREL
DSO relocations.
: BFD_RELOC_V850_16_GOT
DSO relocations.
: BFD_RELOC_V850_32_GOT
DSO relocations.
: BFD_RELOC_V850_22_PLT_PCREL
DSO relocations.
: BFD_RELOC_V850_32_PLT_PCREL
DSO relocations.
: BFD_RELOC_V850_COPY
DSO relocations.
: BFD_RELOC_V850_GLOB_DAT
DSO relocations.
: BFD_RELOC_V850_JMP_SLOT
DSO relocations.
: BFD_RELOC_V850_RELATIVE
DSO relocations.
: BFD_RELOC_V850_16_GOTOFF
DSO relocations.
: BFD_RELOC_V850_32_GOTOFF
DSO relocations.
: BFD_RELOC_V850_CODE
start code.
: BFD_RELOC_V850_DATA
start data in text.
: BFD_RELOC_TIC30_LDP
This is a 8bit DP reloc for the tms320c30, where the most significant 8 bits of a 24 bit word are placed into the least significant 8 bits of the opcode.
: BFD_RELOC_TIC54X_PARTLS7
This is a 7bit reloc for the tms320c54x, where the least significant 7 bits of a 16 bit word are placed into the least significant 7 bits of the opcode.
: BFD_RELOC_TIC54X_PARTMS9
This is a 9bit DP reloc for the tms320c54x, where the most significant 9 bits of a 16 bit word are placed into the least significant 9 bits of the opcode.
: BFD_RELOC_TIC54X_23
This is an extended address 23-bit reloc for the tms320c54x.
: BFD_RELOC_TIC54X_16_OF_23
This is a 16-bit reloc for the tms320c54x, where the least significant 16 bits of a 23-bit extended address are placed into the opcode.
: BFD_RELOC_TIC54X_MS7_OF_23
This is a reloc for the tms320c54x, where the most significant 7 bits of a 23-bit extended address are placed into the opcode.
: BFD_RELOC_C6000_PCR_S21
: BFD_RELOC_C6000_PCR_S12
: BFD_RELOC_C6000_PCR_S10
: BFD_RELOC_C6000_PCR_S7
: BFD_RELOC_C6000_ABS_S16
: BFD_RELOC_C6000_ABS_L16
: BFD_RELOC_C6000_ABS_H16
: BFD_RELOC_C6000_SBR_U15_B
: BFD_RELOC_C6000_SBR_U15_H
: BFD_RELOC_C6000_SBR_U15_W
: BFD_RELOC_C6000_SBR_S16
: BFD_RELOC_C6000_SBR_L16_B
: BFD_RELOC_C6000_SBR_L16_H
: BFD_RELOC_C6000_SBR_L16_W
: BFD_RELOC_C6000_SBR_H16_B
: BFD_RELOC_C6000_SBR_H16_H
: BFD_RELOC_C6000_SBR_H16_W
: BFD_RELOC_C6000_SBR_GOT_U15_W
: BFD_RELOC_C6000_SBR_GOT_L16_W
: BFD_RELOC_C6000_SBR_GOT_H16_W
: BFD_RELOC_C6000_DSBT_INDEX
: BFD_RELOC_C6000_PREL31
: BFD_RELOC_C6000_COPY
: BFD_RELOC_C6000_JUMP_SLOT
: BFD_RELOC_C6000_EHTYPE
: BFD_RELOC_C6000_PCR_H16
: BFD_RELOC_C6000_PCR_L16
: BFD_RELOC_C6000_ALIGN
: BFD_RELOC_C6000_FPHEAD
: BFD_RELOC_C6000_NOCMP
TMS320C6000 relocations.
: BFD_RELOC_FR30_48
This is a 48 bit reloc for the FR30 that stores 32 bits.
: BFD_RELOC_FR30_20
This is a 32 bit reloc for the FR30 that stores 20 bits split up into two sections.
: BFD_RELOC_FR30_6_IN_4
This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in 4 bits.
: BFD_RELOC_FR30_8_IN_8
This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset into 8 bits.
: BFD_RELOC_FR30_9_IN_8
This is a 16 bit reloc for the FR30 that stores a 9 bit short offset into 8 bits.
: BFD_RELOC_FR30_10_IN_8
This is a 16 bit reloc for the FR30 that stores a 10 bit word offset into 8 bits.
: BFD_RELOC_FR30_9_PCREL
This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative short offset into 8 bits.
: BFD_RELOC_FR30_12_PCREL
This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative short offset into 11 bits.
: BFD_RELOC_MCORE_PCREL_IMM8BY4
: BFD_RELOC_MCORE_PCREL_IMM11BY2
: BFD_RELOC_MCORE_PCREL_IMM4BY2
: BFD_RELOC_MCORE_PCREL_32
: BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
: BFD_RELOC_MCORE_RVA
Motorola Mcore relocations.
: BFD_RELOC_MEP_8
: BFD_RELOC_MEP_16
: BFD_RELOC_MEP_32
: BFD_RELOC_MEP_PCREL8A2
: BFD_RELOC_MEP_PCREL12A2
: BFD_RELOC_MEP_PCREL17A2
: BFD_RELOC_MEP_PCREL24A2
: BFD_RELOC_MEP_PCABS24A2
: BFD_RELOC_MEP_LOW16
: BFD_RELOC_MEP_HI16U
: BFD_RELOC_MEP_HI16S
: BFD_RELOC_MEP_GPREL
: BFD_RELOC_MEP_TPREL
: BFD_RELOC_MEP_TPREL7
: BFD_RELOC_MEP_TPREL7A2
: BFD_RELOC_MEP_TPREL7A4
: BFD_RELOC_MEP_UIMM24
: BFD_RELOC_MEP_ADDR24A4
: BFD_RELOC_MEP_GNU_VTINHERIT
: BFD_RELOC_MEP_GNU_VTENTRY
Toshiba Media Processor Relocations.
: BFD_RELOC_METAG_HIADDR16
: BFD_RELOC_METAG_LOADDR16
: BFD_RELOC_METAG_RELBRANCH
: BFD_RELOC_METAG_GETSETOFF
: BFD_RELOC_METAG_HIOG
: BFD_RELOC_METAG_LOOG
: BFD_RELOC_METAG_REL8
: BFD_RELOC_METAG_REL16
: BFD_RELOC_METAG_HI16_GOTOFF
: BFD_RELOC_METAG_LO16_GOTOFF
: BFD_RELOC_METAG_GETSET_GOTOFF
: BFD_RELOC_METAG_GETSET_GOT
: BFD_RELOC_METAG_HI16_GOTPC
: BFD_RELOC_METAG_LO16_GOTPC
: BFD_RELOC_METAG_HI16_PLT
: BFD_RELOC_METAG_LO16_PLT
: BFD_RELOC_METAG_RELBRANCH_PLT
: BFD_RELOC_METAG_GOTOFF
: BFD_RELOC_METAG_PLT
: BFD_RELOC_METAG_COPY
: BFD_RELOC_METAG_JMP_SLOT
: BFD_RELOC_METAG_RELATIVE
: BFD_RELOC_METAG_GLOB_DAT
: BFD_RELOC_METAG_TLS_GD
: BFD_RELOC_METAG_TLS_LDM
: BFD_RELOC_METAG_TLS_LDO_HI16
: BFD_RELOC_METAG_TLS_LDO_LO16
: BFD_RELOC_METAG_TLS_LDO
: BFD_RELOC_METAG_TLS_IE
: BFD_RELOC_METAG_TLS_IENONPIC
: BFD_RELOC_METAG_TLS_IENONPIC_HI16
: BFD_RELOC_METAG_TLS_IENONPIC_LO16
: BFD_RELOC_METAG_TLS_TPOFF
: BFD_RELOC_METAG_TLS_DTPMOD
: BFD_RELOC_METAG_TLS_DTPOFF
: BFD_RELOC_METAG_TLS_LE
: BFD_RELOC_METAG_TLS_LE_HI16
: BFD_RELOC_METAG_TLS_LE_LO16
Imagination Technologies Meta relocations.
: BFD_RELOC_MMIX_GETA
: BFD_RELOC_MMIX_GETA_1
: BFD_RELOC_MMIX_GETA_2
: BFD_RELOC_MMIX_GETA_3
These are relocations for the GETA instruction.
: BFD_RELOC_MMIX_CBRANCH
: BFD_RELOC_MMIX_CBRANCH_J
: BFD_RELOC_MMIX_CBRANCH_1
: BFD_RELOC_MMIX_CBRANCH_2
: BFD_RELOC_MMIX_CBRANCH_3
These are relocations for a conditional branch instruction.
: BFD_RELOC_MMIX_PUSHJ
: BFD_RELOC_MMIX_PUSHJ_1
: BFD_RELOC_MMIX_PUSHJ_2
: BFD_RELOC_MMIX_PUSHJ_3
: BFD_RELOC_MMIX_PUSHJ_STUBBABLE
These are relocations for the PUSHJ instruction.
: BFD_RELOC_MMIX_JMP
: BFD_RELOC_MMIX_JMP_1
: BFD_RELOC_MMIX_JMP_2
: BFD_RELOC_MMIX_JMP_3
These are relocations for the JMP instruction.
: BFD_RELOC_MMIX_ADDR19
This is a relocation for a relative address as in a GETA instruction or a branch.
: BFD_RELOC_MMIX_ADDR27
This is a relocation for a relative address as in a JMP instruction.
: BFD_RELOC_MMIX_REG_OR_BYTE
This is a relocation for an instruction field that may be a general register or a value 0..255.
: BFD_RELOC_MMIX_REG
This is a relocation for an instruction field that may be a general register.
: BFD_RELOC_MMIX_BASE_PLUS_OFFSET
This is a relocation for two instruction fields holding a register and an offset, the equivalent of the relocation.
: BFD_RELOC_MMIX_LOCAL
This relocation is an assertion that the expression is not allocated as a global register. It does not modify contents.
: BFD_RELOC_AVR_7_PCREL
This is a 16 bit reloc for the AVR that stores 8 bit pc relative short offset into 7 bits.
: BFD_RELOC_AVR_13_PCREL
This is a 16 bit reloc for the AVR that stores 13 bit pc relative short offset into 12 bits.
: BFD_RELOC_AVR_16_PM
This is a 16 bit reloc for the AVR that stores 17 bit value (usually program memory address) into 16 bits.
: BFD_RELOC_AVR_LO8_LDI
This is a 16 bit reloc for the AVR that stores 8 bit value (usually data memory address) into 8 bit immediate value of LDI insn.
: BFD_RELOC_AVR_HI8_LDI
This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of data memory address) into 8 bit immediate value of LDI insn.
: BFD_RELOC_AVR_HH8_LDI
This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of program memory address) into 8 bit immediate value of LDI insn.
: BFD_RELOC_AVR_MS8_LDI
This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of 32 bit value) into 8 bit immediate value of LDI insn.
: BFD_RELOC_AVR_LO8_LDI_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually data memory address) into 8 bit immediate value of SUBI insn.
: BFD_RELOC_AVR_HI8_LDI_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of data memory address) into 8 bit immediate value of SUBI insn.
: BFD_RELOC_AVR_HH8_LDI_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (most high 8 bit of program memory address) into 8 bit immediate value of LDI or SUBI insn.
: BFD_RELOC_AVR_MS8_LDI_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (msb of 32 bit value) into 8 bit immediate value of LDI insn.
: BFD_RELOC_AVR_LO8_LDI_PM
This is a 16 bit reloc for the AVR that stores 8 bit value (usually command address) into 8 bit immediate value of LDI insn.
: BFD_RELOC_AVR_LO8_LDI_GS
This is a 16 bit reloc for the AVR that stores 8 bit value (command address) into 8 bit immediate value of LDI insn. If the address is beyond the 128k boundary, the linker inserts a jump stub for this reloc in the lower 128k.
: BFD_RELOC_AVR_HI8_LDI_PM
This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of command address) into 8 bit immediate value of LDI insn.
: BFD_RELOC_AVR_HI8_LDI_GS
This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of command address) into 8 bit immediate value of LDI insn. If the address is beyond the 128k boundary, the linker inserts a jump stub for this reloc below 128k.
: BFD_RELOC_AVR_HH8_LDI_PM
This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of command address) into 8 bit immediate value of LDI insn.
: BFD_RELOC_AVR_LO8_LDI_PM_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually command address) into 8 bit immediate value of SUBI insn.
: BFD_RELOC_AVR_HI8_LDI_PM_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of 16 bit command address) into 8 bit immediate value of SUBI insn.
: BFD_RELOC_AVR_HH8_LDI_PM_NEG
This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 6 bit of 22 bit command address) into 8 bit immediate value of SUBI insn.
: BFD_RELOC_AVR_CALL
This is a 32 bit reloc for the AVR that stores 23 bit value into 22 bits.
: BFD_RELOC_AVR_LDI
This is a 16 bit reloc for the AVR that stores all needed bits for absolute addressing with ldi with overflow check to linktime
: BFD_RELOC_AVR_6
This is a 6 bit reloc for the AVR that stores offset for ldd/std instructions
: BFD_RELOC_AVR_6_ADIW
This is a 6 bit reloc for the AVR that stores offset for adiw/sbiw instructions
: BFD_RELOC_AVR_8_LO
This is a 8 bit reloc for the AVR that stores bits 0..7 of a symbol in .byte lo8(symbol)
: BFD_RELOC_AVR_8_HI
This is a 8 bit reloc for the AVR that stores bits 8..15 of a symbol in .byte hi8(symbol)
: BFD_RELOC_AVR_8_HLO
This is a 8 bit reloc for the AVR that stores bits 16..23 of a symbol in .byte hlo8(symbol)
: BFD_RELOC_RL78_NEG8
: BFD_RELOC_RL78_NEG16
: BFD_RELOC_RL78_NEG24
: BFD_RELOC_RL78_NEG32
: BFD_RELOC_RL78_16_OP
: BFD_RELOC_RL78_24_OP
: BFD_RELOC_RL78_32_OP
: BFD_RELOC_RL78_8U
: BFD_RELOC_RL78_16U
: BFD_RELOC_RL78_24U
: BFD_RELOC_RL78_DIR3U_PCREL
: BFD_RELOC_RL78_DIFF
: BFD_RELOC_RL78_GPRELB
: BFD_RELOC_RL78_GPRELW
: BFD_RELOC_RL78_GPRELL
: BFD_RELOC_RL78_SYM
: BFD_RELOC_RL78_OP_SUBTRACT
: BFD_RELOC_RL78_OP_NEG
: BFD_RELOC_RL78_OP_AND
: BFD_RELOC_RL78_OP_SHRA
: BFD_RELOC_RL78_ABS8
: BFD_RELOC_RL78_ABS16
: BFD_RELOC_RL78_ABS16_REV
: BFD_RELOC_RL78_ABS32
: BFD_RELOC_RL78_ABS32_REV
: BFD_RELOC_RL78_ABS16U
: BFD_RELOC_RL78_ABS16UW
: BFD_RELOC_RL78_ABS16UL
: BFD_RELOC_RL78_RELAX
: BFD_RELOC_RL78_HI16
: BFD_RELOC_RL78_HI8
: BFD_RELOC_RL78_LO16
: BFD_RELOC_RL78_CODE
Renesas RL78 Relocations.
: BFD_RELOC_RX_NEG8
: BFD_RELOC_RX_NEG16
: BFD_RELOC_RX_NEG24
: BFD_RELOC_RX_NEG32
: BFD_RELOC_RX_16_OP
: BFD_RELOC_RX_24_OP
: BFD_RELOC_RX_32_OP
: BFD_RELOC_RX_8U
: BFD_RELOC_RX_16U
: BFD_RELOC_RX_24U
: BFD_RELOC_RX_DIR3U_PCREL
: BFD_RELOC_RX_DIFF
: BFD_RELOC_RX_GPRELB
: BFD_RELOC_RX_GPRELW
: BFD_RELOC_RX_GPRELL
: BFD_RELOC_RX_SYM
: BFD_RELOC_RX_OP_SUBTRACT
: BFD_RELOC_RX_OP_NEG
: BFD_RELOC_RX_ABS8
: BFD_RELOC_RX_ABS16
: BFD_RELOC_RX_ABS16_REV
: BFD_RELOC_RX_ABS32
: BFD_RELOC_RX_ABS32_REV
: BFD_RELOC_RX_ABS16U
: BFD_RELOC_RX_ABS16UW
: BFD_RELOC_RX_ABS16UL
: BFD_RELOC_RX_RELAX
Renesas RX Relocations.
: BFD_RELOC_390_12
Direct 12 bit.
: BFD_RELOC_390_GOT12
12 bit GOT offset.
: BFD_RELOC_390_PLT32
32 bit PC relative PLT address.
: BFD_RELOC_390_COPY
Copy symbol at runtime.
: BFD_RELOC_390_GLOB_DAT
Create GOT entry.
: BFD_RELOC_390_JMP_SLOT
Create PLT entry.
: BFD_RELOC_390_RELATIVE
Adjust by program base.
: BFD_RELOC_390_GOTPC
32 bit PC relative offset to GOT.
: BFD_RELOC_390_GOT16
16 bit GOT offset.
: BFD_RELOC_390_PC12DBL
PC relative 12 bit shifted by 1.
: BFD_RELOC_390_PLT12DBL
12 bit PC rel. PLT shifted by 1.
: BFD_RELOC_390_PC16DBL
PC relative 16 bit shifted by 1.
: BFD_RELOC_390_PLT16DBL
16 bit PC rel. PLT shifted by 1.
: BFD_RELOC_390_PC24DBL
PC relative 24 bit shifted by 1.
: BFD_RELOC_390_PLT24DBL
24 bit PC rel. PLT shifted by 1.
: BFD_RELOC_390_PC32DBL
PC relative 32 bit shifted by 1.
: BFD_RELOC_390_PLT32DBL
32 bit PC rel. PLT shifted by 1.
: BFD_RELOC_390_GOTPCDBL
32 bit PC rel. GOT shifted by 1.
: BFD_RELOC_390_GOT64
64 bit GOT offset.
: BFD_RELOC_390_PLT64
64 bit PC relative PLT address.
: BFD_RELOC_390_GOTENT
32 bit rel. offset to GOT entry.
: BFD_RELOC_390_GOTOFF64
64 bit offset to GOT.
: BFD_RELOC_390_GOTPLT12
12-bit offset to symbol-entry within GOT, with PLT handling.
: BFD_RELOC_390_GOTPLT16
16-bit offset to symbol-entry within GOT, with PLT handling.
: BFD_RELOC_390_GOTPLT32
32-bit offset to symbol-entry within GOT, with PLT handling.
: BFD_RELOC_390_GOTPLT64
64-bit offset to symbol-entry within GOT, with PLT handling.
: BFD_RELOC_390_GOTPLTENT
32-bit rel. offset to symbol-entry within GOT, with PLT handling.
: BFD_RELOC_390_PLTOFF16
16-bit rel. offset from the GOT to a PLT entry.
: BFD_RELOC_390_PLTOFF32
32-bit rel. offset from the GOT to a PLT entry.
: BFD_RELOC_390_PLTOFF64
64-bit rel. offset from the GOT to a PLT entry.
: BFD_RELOC_390_TLS_LOAD
: BFD_RELOC_390_TLS_GDCALL
: BFD_RELOC_390_TLS_LDCALL
: BFD_RELOC_390_TLS_GD32
: BFD_RELOC_390_TLS_GD64
: BFD_RELOC_390_TLS_GOTIE12
: BFD_RELOC_390_TLS_GOTIE32
: BFD_RELOC_390_TLS_GOTIE64
: BFD_RELOC_390_TLS_LDM32
: BFD_RELOC_390_TLS_LDM64
: BFD_RELOC_390_TLS_IE32
: BFD_RELOC_390_TLS_IE64
: BFD_RELOC_390_TLS_IEENT
: BFD_RELOC_390_TLS_LE32
: BFD_RELOC_390_TLS_LE64
: BFD_RELOC_390_TLS_LDO32
: BFD_RELOC_390_TLS_LDO64
: BFD_RELOC_390_TLS_DTPMOD
: BFD_RELOC_390_TLS_DTPOFF
: BFD_RELOC_390_TLS_TPOFF
s390 tls relocations.
: BFD_RELOC_390_20
: BFD_RELOC_390_GOT20
: BFD_RELOC_390_GOTPLT20
: BFD_RELOC_390_TLS_GOTIE20
Long displacement extension.
: BFD_RELOC_390_IRELATIVE
STT_GNU_IFUNC relocation.
: BFD_RELOC_SCORE_GPREL15
Score relocations Low 16 bit for load/store
: BFD_RELOC_SCORE_DUMMY2
: BFD_RELOC_SCORE_JMP
This is a 24-bit reloc with the right 1 bit assumed to be 0
: BFD_RELOC_SCORE_BRANCH
This is a 19-bit reloc with the right 1 bit assumed to be 0
: BFD_RELOC_SCORE_IMM30
This is a 32-bit reloc for 48-bit instructions.
: BFD_RELOC_SCORE_IMM32
This is a 32-bit reloc for 48-bit instructions.
: BFD_RELOC_SCORE16_JMP
This is a 11-bit reloc with the right 1 bit assumed to be 0
: BFD_RELOC_SCORE16_BRANCH
This is a 8-bit reloc with the right 1 bit assumed to be 0
: BFD_RELOC_SCORE_BCMP
This is a 9-bit reloc with the right 1 bit assumed to be 0
: BFD_RELOC_SCORE_GOT15
: BFD_RELOC_SCORE_GOT_LO16
: BFD_RELOC_SCORE_CALL15
: BFD_RELOC_SCORE_DUMMY_HI16
Undocumented Score relocs
: BFD_RELOC_IP2K_FR9
Scenix IP2K - 9-bit register number / data address
: BFD_RELOC_IP2K_BANK
Scenix IP2K - 4-bit register/data bank number
: BFD_RELOC_IP2K_ADDR16CJP
Scenix IP2K - low 13 bits of instruction word address
: BFD_RELOC_IP2K_PAGE3
Scenix IP2K - high 3 bits of instruction word address
: BFD_RELOC_IP2K_LO8DATA
: BFD_RELOC_IP2K_HI8DATA
: BFD_RELOC_IP2K_EX8DATA
Scenix IP2K - ext/low/high 8 bits of data address
: BFD_RELOC_IP2K_LO8INSN
: BFD_RELOC_IP2K_HI8INSN
Scenix IP2K - low/high 8 bits of instruction word address
: BFD_RELOC_IP2K_PC_SKIP
Scenix IP2K - even/odd PC modifier to modify snb pcl.0
: BFD_RELOC_IP2K_TEXT
Scenix IP2K - 16 bit word address in text section.
: BFD_RELOC_IP2K_FR_OFFSET
Scenix IP2K - 7-bit sp or dp offset
: BFD_RELOC_VPE4KMATH_DATA
: BFD_RELOC_VPE4KMATH_INSN
Scenix VPE4K coprocessor - data/insn-space addressing
: BFD_RELOC_VTABLE_INHERIT
: BFD_RELOC_VTABLE_ENTRY
These two relocations are used by the linker to determine which of the entries in a C++ virtual function table are actually used. When the --gc-sections option is given, the linker will zero out the entries that are not used, so that the code for those functions need not be included in the output.

VTABLE_INHERIT is a zero-space relocation used to describe to the linker the inheritance tree of a C++ virtual function table. The relocation's symbol should be the parent class' vtable, and the relocation should be located at the child vtable.

VTABLE_ENTRY is a zero-space relocation that describes the use of a virtual function table entry. The reloc's symbol should refer to the table of the class mentioned in the code. Off of that base, an offset describes the entry that is being used. For Rela hosts, this offset is stored in the reloc's addend. For Rel hosts, we are forced to put this offset in the reloc's section offset.

: BFD_RELOC_IA64_IMM14
: BFD_RELOC_IA64_IMM22
: BFD_RELOC_IA64_IMM64
: BFD_RELOC_IA64_DIR32MSB
: BFD_RELOC_IA64_DIR32LSB
: BFD_RELOC_IA64_DIR64MSB
: BFD_RELOC_IA64_DIR64LSB
: BFD_RELOC_IA64_GPREL22
: BFD_RELOC_IA64_GPREL64I
: BFD_RELOC_IA64_GPREL32MSB
: BFD_RELOC_IA64_GPREL32LSB
: BFD_RELOC_IA64_GPREL64MSB
: BFD_RELOC_IA64_GPREL64LSB
: BFD_RELOC_IA64_LTOFF22
: BFD_RELOC_IA64_LTOFF64I
: BFD_RELOC_IA64_PLTOFF22
: BFD_RELOC_IA64_PLTOFF64I
: BFD_RELOC_IA64_PLTOFF64MSB
: BFD_RELOC_IA64_PLTOFF64LSB
: BFD_RELOC_IA64_FPTR64I
: BFD_RELOC_IA64_FPTR32MSB
: BFD_RELOC_IA64_FPTR32LSB
: BFD_RELOC_IA64_FPTR64MSB
: BFD_RELOC_IA64_FPTR64LSB
: BFD_RELOC_IA64_PCREL21B
: BFD_RELOC_IA64_PCREL21BI
: BFD_RELOC_IA64_PCREL21M
: BFD_RELOC_IA64_PCREL21F
: BFD_RELOC_IA64_PCREL22
: BFD_RELOC_IA64_PCREL60B
: BFD_RELOC_IA64_PCREL64I
: BFD_RELOC_IA64_PCREL32MSB
: BFD_RELOC_IA64_PCREL32LSB
: BFD_RELOC_IA64_PCREL64MSB
: BFD_RELOC_IA64_PCREL64LSB
: BFD_RELOC_IA64_LTOFF_FPTR22
: BFD_RELOC_IA64_LTOFF_FPTR64I
: BFD_RELOC_IA64_LTOFF_FPTR32MSB
: BFD_RELOC_IA64_LTOFF_FPTR32LSB
: BFD_RELOC_IA64_LTOFF_FPTR64MSB
: BFD_RELOC_IA64_LTOFF_FPTR64LSB
: BFD_RELOC_IA64_SEGREL32MSB
: BFD_RELOC_IA64_SEGREL32LSB
: BFD_RELOC_IA64_SEGREL64MSB
: BFD_RELOC_IA64_SEGREL64LSB
: BFD_RELOC_IA64_SECREL32MSB
: BFD_RELOC_IA64_SECREL32LSB
: BFD_RELOC_IA64_SECREL64MSB
: BFD_RELOC_IA64_SECREL64LSB
: BFD_RELOC_IA64_REL32MSB
: BFD_RELOC_IA64_REL32LSB
: BFD_RELOC_IA64_REL64MSB
: BFD_RELOC_IA64_REL64LSB
: BFD_RELOC_IA64_LTV32MSB
: BFD_RELOC_IA64_LTV32LSB
: BFD_RELOC_IA64_LTV64MSB
: BFD_RELOC_IA64_LTV64LSB
: BFD_RELOC_IA64_IPLTMSB
: BFD_RELOC_IA64_IPLTLSB
: BFD_RELOC_IA64_COPY
: BFD_RELOC_IA64_LTOFF22X
: BFD_RELOC_IA64_LDXMOV
: BFD_RELOC_IA64_TPREL14
: BFD_RELOC_IA64_TPREL22
: BFD_RELOC_IA64_TPREL64I
: BFD_RELOC_IA64_TPREL64MSB
: BFD_RELOC_IA64_TPREL64LSB
: BFD_RELOC_IA64_LTOFF_TPREL22
: BFD_RELOC_IA64_DTPMOD64MSB
: BFD_RELOC_IA64_DTPMOD64LSB
: BFD_RELOC_IA64_LTOFF_DTPMOD22
: BFD_RELOC_IA64_DTPREL14
: BFD_RELOC_IA64_DTPREL22
: BFD_RELOC_IA64_DTPREL64I
: BFD_RELOC_IA64_DTPREL32MSB
: BFD_RELOC_IA64_DTPREL32LSB
: BFD_RELOC_IA64_DTPREL64MSB
: BFD_RELOC_IA64_DTPREL64LSB
: BFD_RELOC_IA64_LTOFF_DTPREL22
Intel IA64 Relocations.
: BFD_RELOC_M68HC11_HI8
Motorola 68HC11 reloc. This is the 8 bit high part of an absolute address.
: BFD_RELOC_M68HC11_LO8
Motorola 68HC11 reloc. This is the 8 bit low part of an absolute address.
: BFD_RELOC_M68HC11_3B
Motorola 68HC11 reloc. This is the 3 bit of a value.
: BFD_RELOC_M68HC11_RL_JUMP
Motorola 68HC11 reloc. This reloc marks the beginning of a jump/call instruction. It is used for linker relaxation to correctly identify beginning of instruction and change some branches to use PC-relative addressing mode.
: BFD_RELOC_M68HC11_RL_GROUP
Motorola 68HC11 reloc. This reloc marks a group of several instructions that gcc generates and for which the linker relaxation pass can modify and/or remove some of them.
: BFD_RELOC_M68HC11_LO16
Motorola 68HC11 reloc. This is the 16-bit lower part of an address. It is used for 'call' instruction to specify the symbol address without any special transformation (due to memory bank window).
: BFD_RELOC_M68HC11_PAGE
Motorola 68HC11 reloc. This is a 8-bit reloc that specifies the page number of an address. It is used by 'call' instruction to specify the page number of the symbol.
: BFD_RELOC_M68HC11_24
Motorola 68HC11 reloc. This is a 24-bit reloc that represents the address with a 16-bit value and a 8-bit page number. The symbol address is transformed to follow the 16K memory bank of 68HC12 (seen as mapped in the window).
: BFD_RELOC_M68HC12_5B
Motorola 68HC12 reloc. This is the 5 bits of a value.
: BFD_RELOC_XGATE_RL_JUMP
Freescale XGATE reloc. This reloc marks the beginning of a bra/jal instruction.
: BFD_RELOC_XGATE_RL_GROUP
Freescale XGATE reloc. This reloc marks a group of several instructions that gcc generates and for which the linker relaxation pass can modify and/or remove some of them.
: BFD_RELOC_XGATE_LO16
Freescale XGATE reloc. This is the 16-bit lower part of an address. It is used for the '16-bit' instructions.
: BFD_RELOC_XGATE_GPAGE
Freescale XGATE reloc.
: BFD_RELOC_XGATE_24
Freescale XGATE reloc.
: BFD_RELOC_XGATE_PCREL_9
Freescale XGATE reloc. This is a 9-bit pc-relative reloc.
: BFD_RELOC_XGATE_PCREL_10
Freescale XGATE reloc. This is a 10-bit pc-relative reloc.
: BFD_RELOC_XGATE_IMM8_LO
Freescale XGATE reloc. This is the 16-bit lower part of an address. It is used for the '16-bit' instructions.
: BFD_RELOC_XGATE_IMM8_HI
Freescale XGATE reloc. This is the 16-bit higher part of an address. It is used for the '16-bit' instructions.
: BFD_RELOC_XGATE_IMM3
Freescale XGATE reloc. This is a 3-bit pc-relative reloc.
: BFD_RELOC_XGATE_IMM4
Freescale XGATE reloc. This is a 4-bit pc-relative reloc.
: BFD_RELOC_XGATE_IMM5
Freescale XGATE reloc. This is a 5-bit pc-relative reloc.
: BFD_RELOC_M68HC12_9B
Motorola 68HC12 reloc. This is the 9 bits of a value.
: BFD_RELOC_M68HC12_16B
Motorola 68HC12 reloc. This is the 16 bits of a value.
: BFD_RELOC_M68HC12_9_PCREL
Motorola 68HC12/XGATE reloc. This is a PCREL9 branch.
: BFD_RELOC_M68HC12_10_PCREL
Motorola 68HC12/XGATE reloc. This is a PCREL10 branch.
: BFD_RELOC_M68HC12_LO8XG
Motorola 68HC12/XGATE reloc. This is the 8 bit low part of an absolute address and immediately precedes a matching HI8XG part.
: BFD_RELOC_M68HC12_HI8XG
Motorola 68HC12/XGATE reloc. This is the 8 bit high part of an absolute address and immediately follows a matching LO8XG part.
: BFD_RELOC_16C_NUM08
: BFD_RELOC_16C_NUM08_C
: BFD_RELOC_16C_NUM16
: BFD_RELOC_16C_NUM16_C
: BFD_RELOC_16C_NUM32
: BFD_RELOC_16C_NUM32_C
: BFD_RELOC_16C_DISP04
: BFD_RELOC_16C_DISP04_C
: BFD_RELOC_16C_DISP08
: BFD_RELOC_16C_DISP08_C
: BFD_RELOC_16C_DISP16
: BFD_RELOC_16C_DISP16_C
: BFD_RELOC_16C_DISP24
: BFD_RELOC_16C_DISP24_C
: BFD_RELOC_16C_DISP24a
: BFD_RELOC_16C_DISP24a_C
: BFD_RELOC_16C_REG04
: BFD_RELOC_16C_REG04_C
: BFD_RELOC_16C_REG04a
: BFD_RELOC_16C_REG04a_C
: BFD_RELOC_16C_REG14
: BFD_RELOC_16C_REG14_C
: BFD_RELOC_16C_REG16
: BFD_RELOC_16C_REG16_C
: BFD_RELOC_16C_REG20
: BFD_RELOC_16C_REG20_C
: BFD_RELOC_16C_ABS20
: BFD_RELOC_16C_ABS20_C
: BFD_RELOC_16C_ABS24
: BFD_RELOC_16C_ABS24_C
: BFD_RELOC_16C_IMM04
: BFD_RELOC_16C_IMM04_C
: BFD_RELOC_16C_IMM16
: BFD_RELOC_16C_IMM16_C
: BFD_RELOC_16C_IMM20
: BFD_RELOC_16C_IMM20_C
: BFD_RELOC_16C_IMM24
: BFD_RELOC_16C_IMM24_C
: BFD_RELOC_16C_IMM32
: BFD_RELOC_16C_IMM32_C
NS CR16C Relocations.
: BFD_RELOC_CR16_NUM8
: BFD_RELOC_CR16_NUM16
: BFD_RELOC_CR16_NUM32
: BFD_RELOC_CR16_NUM32a
: BFD_RELOC_CR16_REGREL0
: BFD_RELOC_CR16_REGREL4
: BFD_RELOC_CR16_REGREL4a
: BFD_RELOC_CR16_REGREL14
: BFD_RELOC_CR16_REGREL14a
: BFD_RELOC_CR16_REGREL16
: BFD_RELOC_CR16_REGREL20
: BFD_RELOC_CR16_REGREL20a
: BFD_RELOC_CR16_ABS20
: BFD_RELOC_CR16_ABS24
: BFD_RELOC_CR16_IMM4
: BFD_RELOC_CR16_IMM8
: BFD_RELOC_CR16_IMM16
: BFD_RELOC_CR16_IMM20
: BFD_RELOC_CR16_IMM24
: BFD_RELOC_CR16_IMM32
: BFD_RELOC_CR16_IMM32a
: BFD_RELOC_CR16_DISP4
: BFD_RELOC_CR16_DISP8
: BFD_RELOC_CR16_DISP16
: BFD_RELOC_CR16_DISP20
: BFD_RELOC_CR16_DISP24
: BFD_RELOC_CR16_DISP24a
: BFD_RELOC_CR16_SWITCH8
: BFD_RELOC_CR16_SWITCH16
: BFD_RELOC_CR16_SWITCH32
: BFD_RELOC_CR16_GOT_REGREL20
: BFD_RELOC_CR16_GOTC_REGREL20
: BFD_RELOC_CR16_GLOB_DAT
NS CR16 Relocations.
: BFD_RELOC_CRX_REL4
: BFD_RELOC_CRX_REL8
: BFD_RELOC_CRX_REL8_CMP
: BFD_RELOC_CRX_REL16
: BFD_RELOC_CRX_REL24
: BFD_RELOC_CRX_REL32
: BFD_RELOC_CRX_REGREL12
: BFD_RELOC_CRX_REGREL22
: BFD_RELOC_CRX_REGREL28
: BFD_RELOC_CRX_REGREL32
: BFD_RELOC_CRX_ABS16
: BFD_RELOC_CRX_ABS32
: BFD_RELOC_CRX_NUM8
: BFD_RELOC_CRX_NUM16
: BFD_RELOC_CRX_NUM32
: BFD_RELOC_CRX_IMM16
: BFD_RELOC_CRX_IMM32
: BFD_RELOC_CRX_SWITCH8
: BFD_RELOC_CRX_SWITCH16
: BFD_RELOC_CRX_SWITCH32
NS CRX Relocations.
: BFD_RELOC_CRIS_BDISP8
: BFD_RELOC_CRIS_UNSIGNED_5
: BFD_RELOC_CRIS_SIGNED_6
: BFD_RELOC_CRIS_UNSIGNED_6
: BFD_RELOC_CRIS_SIGNED_8
: BFD_RELOC_CRIS_UNSIGNED_8
: BFD_RELOC_CRIS_SIGNED_16
: BFD_RELOC_CRIS_UNSIGNED_16
: BFD_RELOC_CRIS_LAPCQ_OFFSET
: BFD_RELOC_CRIS_UNSIGNED_4
These relocs are only used within the CRIS assembler. They are not (at present) written to any object files.
: BFD_RELOC_CRIS_COPY
: BFD_RELOC_CRIS_GLOB_DAT
: BFD_RELOC_CRIS_JUMP_SLOT
: BFD_RELOC_CRIS_RELATIVE
Relocs used in ELF shared libraries for CRIS.
: BFD_RELOC_CRIS_32_GOT
32-bit offset to symbol-entry within GOT.
: BFD_RELOC_CRIS_16_GOT
16-bit offset to symbol-entry within GOT.
: BFD_RELOC_CRIS_32_GOTPLT
32-bit offset to symbol-entry within GOT, with PLT handling.
: BFD_RELOC_CRIS_16_GOTPLT
16-bit offset to symbol-entry within GOT, with PLT handling.
: BFD_RELOC_CRIS_32_GOTREL
32-bit offset to symbol, relative to GOT.
: BFD_RELOC_CRIS_32_PLT_GOTREL
32-bit offset to symbol with PLT entry, relative to GOT.
: BFD_RELOC_CRIS_32_PLT_PCREL
32-bit offset to symbol with PLT entry, relative to this relocation.
: BFD_RELOC_CRIS_32_GOT_GD
: BFD_RELOC_CRIS_16_GOT_GD
: BFD_RELOC_CRIS_32_GD
: BFD_RELOC_CRIS_DTP
: BFD_RELOC_CRIS_32_DTPREL
: BFD_RELOC_CRIS_16_DTPREL
: BFD_RELOC_CRIS_32_GOT_TPREL
: BFD_RELOC_CRIS_16_GOT_TPREL
: BFD_RELOC_CRIS_32_TPREL
: BFD_RELOC_CRIS_16_TPREL
: BFD_RELOC_CRIS_DTPMOD
: BFD_RELOC_CRIS_32_IE
Relocs used in TLS code for CRIS.
: BFD_RELOC_860_COPY
: BFD_RELOC_860_GLOB_DAT
: BFD_RELOC_860_JUMP_SLOT
: BFD_RELOC_860_RELATIVE
: BFD_RELOC_860_PC26
: BFD_RELOC_860_PLT26
: BFD_RELOC_860_PC16
: BFD_RELOC_860_LOW0
: BFD_RELOC_860_SPLIT0
: BFD_RELOC_860_LOW1
: BFD_RELOC_860_SPLIT1
: BFD_RELOC_860_LOW2
: BFD_RELOC_860_SPLIT2
: BFD_RELOC_860_LOW3
: BFD_RELOC_860_LOGOT0
: BFD_RELOC_860_SPGOT0
: BFD_RELOC_860_LOGOT1
: BFD_RELOC_860_SPGOT1
: BFD_RELOC_860_LOGOTOFF0
: BFD_RELOC_860_SPGOTOFF0
: BFD_RELOC_860_LOGOTOFF1
: BFD_RELOC_860_SPGOTOFF1
: BFD_RELOC_860_LOGOTOFF2
: BFD_RELOC_860_LOGOTOFF3
: BFD_RELOC_860_LOPC
: BFD_RELOC_860_HIGHADJ
: BFD_RELOC_860_HAGOT
: BFD_RELOC_860_HAGOTOFF
: BFD_RELOC_860_HAPC
: BFD_RELOC_860_HIGH
: BFD_RELOC_860_HIGOT
: BFD_RELOC_860_HIGOTOFF
Intel i860 Relocations.
: BFD_RELOC_OPENRISC_ABS_26
: BFD_RELOC_OPENRISC_REL_26
OpenRISC Relocations.
: BFD_RELOC_H8_DIR16A8
: BFD_RELOC_H8_DIR16R8
: BFD_RELOC_H8_DIR24A8
: BFD_RELOC_H8_DIR24R8
: BFD_RELOC_H8_DIR32A16
: BFD_RELOC_H8_DISP32A16
H8 elf Relocations.
: BFD_RELOC_XSTORMY16_REL_12
: BFD_RELOC_XSTORMY16_12
: BFD_RELOC_XSTORMY16_24
: BFD_RELOC_XSTORMY16_FPTR16
Sony Xstormy16 Relocations.
: BFD_RELOC_RELC
Self-describing complex relocations.
: BFD_RELOC_XC16X_PAG
: BFD_RELOC_XC16X_POF
: BFD_RELOC_XC16X_SEG
: BFD_RELOC_XC16X_SOF
Infineon Relocations.
: BFD_RELOC_VAX_GLOB_DAT
: BFD_RELOC_VAX_JMP_SLOT
: BFD_RELOC_VAX_RELATIVE
Relocations used by VAX ELF.
: BFD_RELOC_MT_PC16
Morpho MT - 16 bit immediate relocation.
: BFD_RELOC_MT_HI16
Morpho MT - Hi 16 bits of an address.
: BFD_RELOC_MT_LO16
Morpho MT - Low 16 bits of an address.
: BFD_RELOC_MT_GNU_VTINHERIT
Morpho MT - Used to tell the linker which vtable entries are used.
: BFD_RELOC_MT_GNU_VTENTRY
Morpho MT - Used to tell the linker which vtable entries are used.
: BFD_RELOC_MT_PCINSN8
Morpho MT - 8 bit immediate relocation.
: BFD_RELOC_MSP430_10_PCREL
: BFD_RELOC_MSP430_16_PCREL
: BFD_RELOC_MSP430_16
: BFD_RELOC_MSP430_16_PCREL_BYTE
: BFD_RELOC_MSP430_16_BYTE
: BFD_RELOC_MSP430_2X_PCREL
: BFD_RELOC_MSP430_RL_PCREL
: BFD_RELOC_MSP430_ABS8
: BFD_RELOC_MSP430X_PCR20_EXT_SRC
: BFD_RELOC_MSP430X_PCR20_EXT_DST
: BFD_RELOC_MSP430X_PCR20_EXT_ODST
: BFD_RELOC_MSP430X_ABS20_EXT_SRC
: BFD_RELOC_MSP430X_ABS20_EXT_DST
: BFD_RELOC_MSP430X_ABS20_EXT_ODST
: BFD_RELOC_MSP430X_ABS20_ADR_SRC
: BFD_RELOC_MSP430X_ABS20_ADR_DST
: BFD_RELOC_MSP430X_PCR16
: BFD_RELOC_MSP430X_PCR20_CALL
: BFD_RELOC_MSP430X_ABS16
: BFD_RELOC_MSP430_ABS_HI16
: BFD_RELOC_MSP430_PREL31
: BFD_RELOC_MSP430_SYM_DIFF
msp430 specific relocation codes
: BFD_RELOC_NIOS2_S16
: BFD_RELOC_NIOS2_U16
: BFD_RELOC_NIOS2_CALL26
: BFD_RELOC_NIOS2_IMM5
: BFD_RELOC_NIOS2_CACHE_OPX
: BFD_RELOC_NIOS2_IMM6
: BFD_RELOC_NIOS2_IMM8
: BFD_RELOC_NIOS2_HI16
: BFD_RELOC_NIOS2_LO16
: BFD_RELOC_NIOS2_HIADJ16
: BFD_RELOC_NIOS2_GPREL
: BFD_RELOC_NIOS2_UJMP
: BFD_RELOC_NIOS2_CJMP
: BFD_RELOC_NIOS2_CALLR
: BFD_RELOC_NIOS2_ALIGN
: BFD_RELOC_NIOS2_GOT16
: BFD_RELOC_NIOS2_CALL16
: BFD_RELOC_NIOS2_GOTOFF_LO
: BFD_RELOC_NIOS2_GOTOFF_HA
: BFD_RELOC_NIOS2_PCREL_LO
: BFD_RELOC_NIOS2_PCREL_HA
: BFD_RELOC_NIOS2_TLS_GD16
: BFD_RELOC_NIOS2_TLS_LDM16
: BFD_RELOC_NIOS2_TLS_LDO16
: BFD_RELOC_NIOS2_TLS_IE16
: BFD_RELOC_NIOS2_TLS_LE16
: BFD_RELOC_NIOS2_TLS_DTPMOD
: BFD_RELOC_NIOS2_TLS_DTPREL
: BFD_RELOC_NIOS2_TLS_TPREL
: BFD_RELOC_NIOS2_COPY
: BFD_RELOC_NIOS2_GLOB_DAT
: BFD_RELOC_NIOS2_JUMP_SLOT
: BFD_RELOC_NIOS2_RELATIVE
: BFD_RELOC_NIOS2_GOTOFF
Relocations used by the Altera Nios II core.
: BFD_RELOC_IQ2000_OFFSET_16
: BFD_RELOC_IQ2000_OFFSET_21
: BFD_RELOC_IQ2000_UHI16
IQ2000 Relocations.
: BFD_RELOC_LMP_HI16
: BFD_RELOC_LMP_LO16
: BFD_RELOC_LMP_IM16
: BFD_RELOC_LMP_REL16
: BFD_RELOC_LMP_HI16_PCREL
: BFD_RELOC_LMP_LO16_PCREL
: BFD_RELOC_LMP_IM16_PCREL
Hi-Core Relocations.
: BFD_RELOC_XTENSA_RTLD
Special Xtensa relocation used only by PLT entries in ELF shared objects to indicate that the runtime linker should set the value to one of its own internal functions or data structures.
: BFD_RELOC_XTENSA_GLOB_DAT
: BFD_RELOC_XTENSA_JMP_SLOT
: BFD_RELOC_XTENSA_RELATIVE
Xtensa relocations for ELF shared objects.
: BFD_RELOC_XTENSA_PLT
Xtensa relocation used in ELF object files for symbols that may require PLT entries. Otherwise, this is just a generic 32-bit relocation.
: BFD_RELOC_XTENSA_DIFF8
: BFD_RELOC_XTENSA_DIFF16
: BFD_RELOC_XTENSA_DIFF32
Xtensa relocations to mark the difference of two local symbols. These are only needed to support linker relaxation and can be ignored when not relaxing. The field is set to the value of the difference assuming no relaxation. The relocation encodes the position of the first symbol so the linker can determine whether to adjust the field value.
: BFD_RELOC_XTENSA_SLOT0_OP
: BFD_RELOC_XTENSA_SLOT1_OP
: BFD_RELOC_XTENSA_SLOT2_OP
: BFD_RELOC_XTENSA_SLOT3_OP
: BFD_RELOC_XTENSA_SLOT4_OP
: BFD_RELOC_XTENSA_SLOT5_OP
: BFD_RELOC_XTENSA_SLOT6_OP
: BFD_RELOC_XTENSA_SLOT7_OP
: BFD_RELOC_XTENSA_SLOT8_OP
: BFD_RELOC_XTENSA_SLOT9_OP
: BFD_RELOC_XTENSA_SLOT10_OP
: BFD_RELOC_XTENSA_SLOT11_OP
: BFD_RELOC_XTENSA_SLOT12_OP
: BFD_RELOC_XTENSA_SLOT13_OP
: BFD_RELOC_XTENSA_SLOT14_OP
Generic Xtensa relocations for instruction operands. Only the slot number is encoded in the relocation. The relocation applies to the last PC-relative immediate operand, or if there are no PC-relative immediates, to the last immediate operand.
: BFD_RELOC_XTENSA_SLOT0_ALT
: BFD_RELOC_XTENSA_SLOT1_ALT
: BFD_RELOC_XTENSA_SLOT2_ALT
: BFD_RELOC_XTENSA_SLOT3_ALT
: BFD_RELOC_XTENSA_SLOT4_ALT
: BFD_RELOC_XTENSA_SLOT5_ALT
: BFD_RELOC_XTENSA_SLOT6_ALT
: BFD_RELOC_XTENSA_SLOT7_ALT
: BFD_RELOC_XTENSA_SLOT8_ALT
: BFD_RELOC_XTENSA_SLOT9_ALT
: BFD_RELOC_XTENSA_SLOT10_ALT
: BFD_RELOC_XTENSA_SLOT11_ALT
: BFD_RELOC_XTENSA_SLOT12_ALT
: BFD_RELOC_XTENSA_SLOT13_ALT
: BFD_RELOC_XTENSA_SLOT14_ALT
Alternate Xtensa relocations. Only the slot is encoded in the relocation. The meaning of these relocations is opcode-specific.
: BFD_RELOC_XTENSA_OP0
: BFD_RELOC_XTENSA_OP1
: BFD_RELOC_XTENSA_OP2
Xtensa relocations for backward compatibility. These have all been replaced by BFD_RELOC_XTENSA_SLOT0_OP.
: BFD_RELOC_XTENSA_ASM_EXPAND
Xtensa relocation to mark that the assembler expanded the instructions from an original target. The expansion size is encoded in the reloc size.
: BFD_RELOC_XTENSA_ASM_SIMPLIFY
Xtensa relocation to mark that the linker should simplify assembler-expanded instructions. This is commonly used internally by the linker after analysis of a BFD_RELOC_XTENSA_ASM_EXPAND.
: BFD_RELOC_XTENSA_TLSDESC_FN
: BFD_RELOC_XTENSA_TLSDESC_ARG
: BFD_RELOC_XTENSA_TLS_DTPOFF
: BFD_RELOC_XTENSA_TLS_TPOFF
: BFD_RELOC_XTENSA_TLS_FUNC
: BFD_RELOC_XTENSA_TLS_ARG
: BFD_RELOC_XTENSA_TLS_CALL
Xtensa TLS relocations.
: BFD_RELOC_Z80_DISP8
8 bit signed offset in (ix+d) or (iy+d).
: BFD_RELOC_Z8K_DISP7
DJNZ offset.
: BFD_RELOC_Z8K_CALLR
CALR offset.
: BFD_RELOC_Z8K_IMM4L
4 bit value.
: BFD_RELOC_LM32_CALL
: BFD_RELOC_LM32_BRANCH
: BFD_RELOC_LM32_16_GOT
: BFD_RELOC_LM32_GOTOFF_HI16
: BFD_RELOC_LM32_GOTOFF_LO16
: BFD_RELOC_LM32_COPY
: BFD_RELOC_LM32_GLOB_DAT
: BFD_RELOC_LM32_JMP_SLOT
: BFD_RELOC_LM32_RELATIVE
Lattice Mico32 relocations.
: BFD_RELOC_MACH_O_SECTDIFF
Difference between two section addreses. Must be followed by a BFD_RELOC_MACH_O_PAIR.
: BFD_RELOC_MACH_O_LOCAL_SECTDIFF
Like BFD_RELOC_MACH_O_SECTDIFF but with a local symbol.
: BFD_RELOC_MACH_O_PAIR
Pair of relocation. Contains the first symbol.
: BFD_RELOC_MACH_O_X86_64_BRANCH32
: BFD_RELOC_MACH_O_X86_64_BRANCH8
PCREL relocations. They are marked as branch to create PLT entry if required.
: BFD_RELOC_MACH_O_X86_64_GOT
Used when referencing a GOT entry.
: BFD_RELOC_MACH_O_X86_64_GOT_LOAD
Used when loading a GOT entry with movq. It is specially marked so that the linker could optimize the movq to a leaq if possible.
: BFD_RELOC_MACH_O_X86_64_SUBTRACTOR32
Symbol will be substracted. Must be followed by a BFD_RELOC_64.
: BFD_RELOC_MACH_O_X86_64_SUBTRACTOR64
Symbol will be substracted. Must be followed by a BFD_RELOC_64.
: BFD_RELOC_MACH_O_X86_64_PCREL32_1
Same as BFD_RELOC_32_PCREL but with an implicit -1 addend.
: BFD_RELOC_MACH_O_X86_64_PCREL32_2
Same as BFD_RELOC_32_PCREL but with an implicit -2 addend.
: BFD_RELOC_MACH_O_X86_64_PCREL32_4
Same as BFD_RELOC_32_PCREL but with an implicit -4 addend.
: BFD_RELOC_MICROBLAZE_32_LO
This is a 32 bit reloc for the microblaze that stores the low 16 bits of a value
: BFD_RELOC_MICROBLAZE_32_LO_PCREL
This is a 32 bit pc-relative reloc for the microblaze that stores the low 16 bits of a value
: BFD_RELOC_MICROBLAZE_32_ROSDA
This is a 32 bit reloc for the microblaze that stores a value relative to the read-only small data area anchor
: BFD_RELOC_MICROBLAZE_32_RWSDA
This is a 32 bit reloc for the microblaze that stores a value relative to the read-write small data area anchor
: BFD_RELOC_MICROBLAZE_32_SYM_OP_SYM
This is a 32 bit reloc for the microblaze to handle expressions of the form "Symbol Op Symbol"
: BFD_RELOC_MICROBLAZE_64_NONE
This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an imm instruction). No relocation is done here - only used for relaxing
: BFD_RELOC_MICROBLAZE_64_GOTPC
This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an imm instruction). The relocation is PC-relative GOT offset
: BFD_RELOC_MICROBLAZE_64_GOT
This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an imm instruction). The relocation is GOT offset
: BFD_RELOC_MICROBLAZE_64_PLT
This is a 64 bit reloc that stores the 32 bit pc relative value in two words (with an imm instruction). The relocation is PC-relative offset into PLT
: BFD_RELOC_MICROBLAZE_64_GOTOFF
This is a 64 bit reloc that stores the 32 bit GOT relative value in two words (with an imm instruction). The relocation is relative offset from _GLOBAL_OFFSET_TABLE_
: BFD_RELOC_MICROBLAZE_32_GOTOFF
This is a 32 bit reloc that stores the 32 bit GOT relative value in a word. The relocation is relative offset from
: BFD_RELOC_MICROBLAZE_COPY
This is used to tell the dynamic linker to copy the value out of the dynamic object into the runtime process image.
: BFD_RELOC_MICROBLAZE_64_TLS
Unused Reloc
: BFD_RELOC_MICROBLAZE_64_TLSGD
This is a 64 bit reloc that stores the 32 bit GOT relative value of the GOT TLS GD info entry in two words (with an imm instruction). The relocation is GOT offset.
: BFD_RELOC_MICROBLAZE_64_TLSLD
This is a 64 bit reloc that stores the 32 bit GOT relative value of the GOT TLS LD info entry in two words (with an imm instruction). The relocation is GOT offset.
: BFD_RELOC_MICROBLAZE_32_TLSDTPMOD
This is a 32 bit reloc that stores the Module ID to GOT(n).
: BFD_RELOC_MICROBLAZE_32_TLSDTPREL
This is a 32 bit reloc that stores TLS offset to GOT(n+1).
: BFD_RELOC_MICROBLAZE_64_TLSDTPREL
This is a 32 bit reloc for storing TLS offset to two words (uses imm instruction)
: BFD_RELOC_MICROBLAZE_64_TLSGOTTPREL
This is a 64 bit reloc that stores 32-bit thread pointer relative offset to two words (uses imm instruction).
: BFD_RELOC_MICROBLAZE_64_TLSTPREL
This is a 64 bit reloc that stores 32-bit thread pointer relative offset to two words (uses imm instruction).
: BFD_RELOC_AARCH64_RELOC_START
AArch64 pseudo relocation code to mark the start of the AArch64 relocation enumerators. N.B. the order of the enumerators is important as several tables in the AArch64 bfd backend are indexed by these enumerators; make sure they are all synced.
: BFD_RELOC_AARCH64_NONE
AArch64 null relocation code.
: BFD_RELOC_AARCH64_64
: BFD_RELOC_AARCH64_32
: BFD_RELOC_AARCH64_16
Basic absolute relocations of N bits. These are equivalent to BFD_RELOC_N and they were added to assist the indexing of the howto table.
: BFD_RELOC_AARCH64_64_PCREL
: BFD_RELOC_AARCH64_32_PCREL
: BFD_RELOC_AARCH64_16_PCREL
PC-relative relocations. These are equivalent to BFD_RELOC_N_PCREL and they were added to assist the indexing of the howto table.
: BFD_RELOC_AARCH64_MOVW_G0
AArch64 MOV[NZK] instruction with most significant bits 0 to 15 of an unsigned address/value.
: BFD_RELOC_AARCH64_MOVW_G0_NC
AArch64 MOV[NZK] instruction with less significant bits 0 to 15 of an address/value. No overflow checking.
: BFD_RELOC_AARCH64_MOVW_G1
AArch64 MOV[NZK] instruction with most significant bits 16 to 31 of an unsigned address/value.
: BFD_RELOC_AARCH64_MOVW_G1_NC
AArch64 MOV[NZK] instruction with less significant bits 16 to 31 of an address/value. No overflow checking.
: BFD_RELOC_AARCH64_MOVW_G2
AArch64 MOV[NZK] instruction with most significant bits 32 to 47 of an unsigned address/value.
: BFD_RELOC_AARCH64_MOVW_G2_NC
AArch64 MOV[NZK] instruction with less significant bits 32 to 47 of an address/value. No overflow checking.
: BFD_RELOC_AARCH64_MOVW_G3
AArch64 MOV[NZK] instruction with most signficant bits 48 to 64 of a signed or unsigned address/value.
: BFD_RELOC_AARCH64_MOVW_G0_S
AArch64 MOV[NZ] instruction with most significant bits 0 to 15 of a signed value. Changes instruction to MOVZ or MOVN depending on the value's sign.
: BFD_RELOC_AARCH64_MOVW_G1_S
AArch64 MOV[NZ] instruction with most significant bits 16 to 31 of a signed value. Changes instruction to MOVZ or MOVN depending on the value's sign.
: BFD_RELOC_AARCH64_MOVW_G2_S
AArch64 MOV[NZ] instruction with most significant bits 32 to 47 of a signed value. Changes instruction to MOVZ or MOVN depending on the value's sign.
: BFD_RELOC_AARCH64_LD_LO19_PCREL
AArch64 Load Literal instruction, holding a 19 bit pc-relative word offset. The lowest two bits must be zero and are not stored in the instruction, giving a 21 bit signed byte offset.
: BFD_RELOC_AARCH64_ADR_LO21_PCREL
AArch64 ADR instruction, holding a simple 21 bit pc-relative byte offset.
: BFD_RELOC_AARCH64_ADR_HI21_PCREL
AArch64 ADRP instruction, with bits 12 to 32 of a pc-relative page offset, giving a 4KB aligned page base address.
: BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL
AArch64 ADRP instruction, with bits 12 to 32 of a pc-relative page offset, giving a 4KB aligned page base address, but with no overflow checking.
: BFD_RELOC_AARCH64_ADD_LO12
AArch64 ADD immediate instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.
: BFD_RELOC_AARCH64_LDST8_LO12
AArch64 8-bit load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.
: BFD_RELOC_AARCH64_TSTBR14
AArch64 14 bit pc-relative test bit and branch. The lowest two bits must be zero and are not stored in the instruction, giving a 16 bit signed byte offset.
: BFD_RELOC_AARCH64_BRANCH19
AArch64 19 bit pc-relative conditional branch and compare & branch. The lowest two bits must be zero and are not stored in the instruction, giving a 21 bit signed byte offset.
: BFD_RELOC_AARCH64_JUMP26
AArch64 26 bit pc-relative unconditional branch. The lowest two bits must be zero and are not stored in the instruction, giving a 28 bit signed byte offset.
: BFD_RELOC_AARCH64_CALL26
AArch64 26 bit pc-relative unconditional branch and link. The lowest two bits must be zero and are not stored in the instruction, giving a 28 bit signed byte offset.
: BFD_RELOC_AARCH64_LDST16_LO12
AArch64 16-bit load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.
: BFD_RELOC_AARCH64_LDST32_LO12
AArch64 32-bit load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.
: BFD_RELOC_AARCH64_LDST64_LO12
AArch64 64-bit load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.
: BFD_RELOC_AARCH64_LDST128_LO12
AArch64 128-bit load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.
: BFD_RELOC_AARCH64_GOT_LD_PREL19
AArch64 Load Literal instruction, holding a 19 bit PC relative word offset of the global offset table entry for a symbol. The lowest two bits must be zero and are not stored in the instruction, giving a 21 bit signed byte offset. This relocation type requires signed overflow checking.
: BFD_RELOC_AARCH64_ADR_GOT_PAGE
Get to the page base of the global offset table entry for a symbol as part of an ADRP instruction using a 21 bit PC relative value.Used in conjunction with BFD_RELOC_AARCH64_LD64_GOT_LO12_NC.
: BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
Unsigned 12 bit byte offset for 64 bit load/store from the page of the GOT entry for this symbol. Used in conjunction with BFD_RELOC_AARCH64_ADR_GOTPAGE. Valid in LP64 ABI only.
: BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
Unsigned 12 bit byte offset for 32 bit load/store from the page of the GOT entry for this symbol. Used in conjunction with BFD_RELOC_AARCH64_ADR_GOTPAGE. Valid in ILP32 ABI only.
: BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
Get to the page base of the global offset table entry for a symbols tls_index structure as part of an adrp instruction using a 21 bit PC relative value. Used in conjunction with BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC.
: BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
Unsigned 12 bit byte offset to global offset table entry for a symbols tls_index structure. Used in conjunction with BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21.
: BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1
AArch64 TLS INITIAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
AArch64 TLS INITIAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
AArch64 TLS INITIAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
AArch64 TLS INITIAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
AArch64 TLS INITIAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19
AArch64 TLS INITIAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
AArch64 TLS LOCAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
AArch64 TLS LOCAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
AArch64 TLS LOCAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0
AArch64 TLS LOCAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
AArch64 TLS LOCAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
AArch64 TLS LOCAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12
AArch64 TLS LOCAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC
AArch64 TLS LOCAL EXEC relocation.
: BFD_RELOC_AARCH64_TLSDESC_LD_PREL19
AArch64 TLS DESC relocation.
: BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21
AArch64 TLS DESC relocation.
: BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
AArch64 TLS DESC relocation.
: BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC
AArch64 TLS DESC relocation.
: BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
AArch64 TLS DESC relocation.
: BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC
AArch64 TLS DESC relocation.
: BFD_RELOC_AARCH64_TLSDESC_OFF_G1
AArch64 TLS DESC relocation.
: BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC
AArch64 TLS DESC relocation.
: BFD_RELOC_AARCH64_TLSDESC_LDR
AArch64 TLS DESC relocation.
: BFD_RELOC_AARCH64_TLSDESC_ADD
AArch64 TLS DESC relocation.
: BFD_RELOC_AARCH64_TLSDESC_CALL
AArch64 TLS DESC relocation.
: BFD_RELOC_AARCH64_COPY
AArch64 TLS relocation.
: BFD_RELOC_AARCH64_GLOB_DAT
AArch64 TLS relocation.
: BFD_RELOC_AARCH64_JUMP_SLOT
AArch64 TLS relocation.
: BFD_RELOC_AARCH64_RELATIVE
AArch64 TLS relocation.
: BFD_RELOC_AARCH64_TLS_DTPMOD
AArch64 TLS relocation.
: BFD_RELOC_AARCH64_TLS_DTPREL
AArch64 TLS relocation.
: BFD_RELOC_AARCH64_TLS_TPREL
AArch64 TLS relocation.
: BFD_RELOC_AARCH64_TLSDESC
AArch64 TLS relocation.
: BFD_RELOC_AARCH64_IRELATIVE
AArch64 support for STT_GNU_IFUNC.
: BFD_RELOC_AARCH64_RELOC_END
AArch64 pseudo relocation code to mark the end of the AArch64 relocation enumerators that have direct mapping to ELF reloc codes. There are a few more enumerators after this one; those are mainly used by the AArch64 assembler for the internal fixup or to select one of the above enumerators.
: BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP
AArch64 pseudo relocation code to be used internally by the AArch64 assembler and not (currently) written to any object files.
: BFD_RELOC_AARCH64_LDST_LO12
AArch64 unspecified load/store instruction, holding bits 0 to 11 of the address. Used in conjunction with BFD_RELOC_AARCH64_ADR_HI21_PCREL.
: BFD_RELOC_AARCH64_LD_GOT_LO12_NC
AArch64 pseudo relocation code to be used internally by the AArch64 assembler and not (currently) written to any object files.
: BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC
AArch64 pseudo relocation code to be used internally by the AArch64 assembler and not (currently) written to any object files.
: BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC
AArch64 pseudo relocation code to be used internally by the AArch64 assembler and not (currently) written to any object files.
: BFD_RELOC_TILEPRO_COPY
: BFD_RELOC_TILEPRO_GLOB_DAT
: BFD_RELOC_TILEPRO_JMP_SLOT
: BFD_RELOC_TILEPRO_RELATIVE
: BFD_RELOC_TILEPRO_BROFF_X1
: BFD_RELOC_TILEPRO_JOFFLONG_X1
: BFD_RELOC_TILEPRO_JOFFLONG_X1_PLT
: BFD_RELOC_TILEPRO_IMM8_X0
: BFD_RELOC_TILEPRO_IMM8_Y0
: BFD_RELOC_TILEPRO_IMM8_X1
: BFD_RELOC_TILEPRO_IMM8_Y1
: BFD_RELOC_TILEPRO_DEST_IMM8_X1
: BFD_RELOC_TILEPRO_MT_IMM15_X1
: BFD_RELOC_TILEPRO_MF_IMM15_X1
: BFD_RELOC_TILEPRO_IMM16_X0
: BFD_RELOC_TILEPRO_IMM16_X1
: BFD_RELOC_TILEPRO_IMM16_X0_LO
: BFD_RELOC_TILEPRO_IMM16_X1_LO
: BFD_RELOC_TILEPRO_IMM16_X0_HI
: BFD_RELOC_TILEPRO_IMM16_X1_HI
: BFD_RELOC_TILEPRO_IMM16_X0_HA
: BFD_RELOC_TILEPRO_IMM16_X1_HA
: BFD_RELOC_TILEPRO_IMM16_X0_PCREL
: BFD_RELOC_TILEPRO_IMM16_X1_PCREL
: BFD_RELOC_TILEPRO_IMM16_X0_LO_PCREL
: BFD_RELOC_TILEPRO_IMM16_X1_LO_PCREL
: BFD_RELOC_TILEPRO_IMM16_X0_HI_PCREL
: BFD_RELOC_TILEPRO_IMM16_X1_HI_PCREL
: BFD_RELOC_TILEPRO_IMM16_X0_HA_PCREL
: BFD_RELOC_TILEPRO_IMM16_X1_HA_PCREL
: BFD_RELOC_TILEPRO_IMM16_X0_GOT
: BFD_RELOC_TILEPRO_IMM16_X1_GOT
: BFD_RELOC_TILEPRO_IMM16_X0_GOT_LO
: BFD_RELOC_TILEPRO_IMM16_X1_GOT_LO
: BFD_RELOC_TILEPRO_IMM16_X0_GOT_HI
: BFD_RELOC_TILEPRO_IMM16_X1_GOT_HI
: BFD_RELOC_TILEPRO_IMM16_X0_GOT_HA
: BFD_RELOC_TILEPRO_IMM16_X1_GOT_HA
: BFD_RELOC_TILEPRO_MMSTART_X0
: BFD_RELOC_TILEPRO_MMEND_X0
: BFD_RELOC_TILEPRO_MMSTART_X1
: BFD_RELOC_TILEPRO_MMEND_X1
: BFD_RELOC_TILEPRO_SHAMT_X0
: BFD_RELOC_TILEPRO_SHAMT_X1
: BFD_RELOC_TILEPRO_SHAMT_Y0
: BFD_RELOC_TILEPRO_SHAMT_Y1
: BFD_RELOC_TILEPRO_TLS_GD_CALL
: BFD_RELOC_TILEPRO_IMM8_X0_TLS_GD_ADD
: BFD_RELOC_TILEPRO_IMM8_X1_TLS_GD_ADD
: BFD_RELOC_TILEPRO_IMM8_Y0_TLS_GD_ADD
: BFD_RELOC_TILEPRO_IMM8_Y1_TLS_GD_ADD
: BFD_RELOC_TILEPRO_TLS_IE_LOAD
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_LO
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_LO
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_HI
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_HI
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_GD_HA
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_GD_HA
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_LO
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_LO
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_HI
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_HI
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_IE_HA
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_IE_HA
: BFD_RELOC_TILEPRO_TLS_DTPMOD32
: BFD_RELOC_TILEPRO_TLS_DTPOFF32
: BFD_RELOC_TILEPRO_TLS_TPOFF32
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_LO
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_LO
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_HI
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_HI
: BFD_RELOC_TILEPRO_IMM16_X0_TLS_LE_HA
: BFD_RELOC_TILEPRO_IMM16_X1_TLS_LE_HA
Tilera TILEPro Relocations.
: BFD_RELOC_TILEGX_HW0
: BFD_RELOC_TILEGX_HW1
: BFD_RELOC_TILEGX_HW2
: BFD_RELOC_TILEGX_HW3
: BFD_RELOC_TILEGX_HW0_LAST
: BFD_RELOC_TILEGX_HW1_LAST
: BFD_RELOC_TILEGX_HW2_LAST
: BFD_RELOC_TILEGX_COPY
: BFD_RELOC_TILEGX_GLOB_DAT
: BFD_RELOC_TILEGX_JMP_SLOT
: BFD_RELOC_TILEGX_RELATIVE
: BFD_RELOC_TILEGX_BROFF_X1
: BFD_RELOC_TILEGX_JUMPOFF_X1
: BFD_RELOC_TILEGX_JUMPOFF_X1_PLT
: BFD_RELOC_TILEGX_IMM8_X0
: BFD_RELOC_TILEGX_IMM8_Y0
: BFD_RELOC_TILEGX_IMM8_X1
: BFD_RELOC_TILEGX_IMM8_Y1
: BFD_RELOC_TILEGX_DEST_IMM8_X1
: BFD_RELOC_TILEGX_MT_IMM14_X1
: BFD_RELOC_TILEGX_MF_IMM14_X1
: BFD_RELOC_TILEGX_MMSTART_X0
: BFD_RELOC_TILEGX_MMEND_X0
: BFD_RELOC_TILEGX_SHAMT_X0
: BFD_RELOC_TILEGX_SHAMT_X1
: BFD_RELOC_TILEGX_SHAMT_Y0
: BFD_RELOC_TILEGX_SHAMT_Y1
: BFD_RELOC_TILEGX_IMM16_X0_HW0
: BFD_RELOC_TILEGX_IMM16_X1_HW0
: BFD_RELOC_TILEGX_IMM16_X0_HW1
: BFD_RELOC_TILEGX_IMM16_X1_HW1
: BFD_RELOC_TILEGX_IMM16_X0_HW2
: BFD_RELOC_TILEGX_IMM16_X1_HW2
: BFD_RELOC_TILEGX_IMM16_X0_HW3
: BFD_RELOC_TILEGX_IMM16_X1_HW3
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST
: BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST
: BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST
: BFD_RELOC_TILEGX_IMM16_X0_HW0_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW0_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW1_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW1_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW2_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW2_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW3_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW3_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW0_GOT
: BFD_RELOC_TILEGX_IMM16_X1_HW0_GOT
: BFD_RELOC_TILEGX_IMM16_X0_HW0_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW0_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW1_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW1_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW2_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW2_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_GOT
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_GOT
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_GOT
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_GOT
: BFD_RELOC_TILEGX_IMM16_X0_HW3_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW3_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
: BFD_RELOC_TILEGX_IMM16_X0_HW0_TLS_IE
: BFD_RELOC_TILEGX_IMM16_X1_HW0_TLS_IE
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
: BFD_RELOC_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
: BFD_RELOC_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
: BFD_RELOC_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
: BFD_RELOC_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
: BFD_RELOC_TILEGX_TLS_DTPMOD64
: BFD_RELOC_TILEGX_TLS_DTPOFF64
: BFD_RELOC_TILEGX_TLS_TPOFF64
: BFD_RELOC_TILEGX_TLS_DTPMOD32
: BFD_RELOC_TILEGX_TLS_DTPOFF32
: BFD_RELOC_TILEGX_TLS_TPOFF32
: BFD_RELOC_TILEGX_TLS_GD_CALL
: BFD_RELOC_TILEGX_IMM8_X0_TLS_GD_ADD
: BFD_RELOC_TILEGX_IMM8_X1_TLS_GD_ADD
: BFD_RELOC_TILEGX_IMM8_Y0_TLS_GD_ADD
: BFD_RELOC_TILEGX_IMM8_Y1_TLS_GD_ADD
: BFD_RELOC_TILEGX_TLS_IE_LOAD
: BFD_RELOC_TILEGX_IMM8_X0_TLS_ADD
: BFD_RELOC_TILEGX_IMM8_X1_TLS_ADD
: BFD_RELOC_TILEGX_IMM8_Y0_TLS_ADD
: BFD_RELOC_TILEGX_IMM8_Y1_TLS_ADD
Tilera TILE-Gx Relocations.
: BFD_RELOC_EPIPHANY_SIMM8
Adapteva EPIPHANY - 8 bit signed pc-relative displacement
: BFD_RELOC_EPIPHANY_SIMM24
Adapteva EPIPHANY - 24 bit signed pc-relative displacement
: BFD_RELOC_EPIPHANY_HIGH
Adapteva EPIPHANY - 16 most-significant bits of absolute address
: BFD_RELOC_EPIPHANY_LOW
Adapteva EPIPHANY - 16 least-significant bits of absolute address
: BFD_RELOC_EPIPHANY_SIMM11
Adapteva EPIPHANY - 11 bit signed number - add/sub immediate
: BFD_RELOC_EPIPHANY_IMM11
Adapteva EPIPHANY - 11 bit sign-magnitude number (ld/st displacement)
: BFD_RELOC_EPIPHANY_IMM8
Adapteva EPIPHANY - 8 bit immediate for 16 bit mov instruction.

 
typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.2.2 bfd_reloc_type_lookup

Synopsis
 
reloc_howto_type *bfd_reloc_type_lookup
   (bfd *abfd, bfd_reloc_code_real_type code);
reloc_howto_type *bfd_reloc_name_lookup
   (bfd *abfd, const char *reloc_name);
Description
Return a pointer to a howto structure which, when invoked, will perform the relocation code on data from the architecture noted.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.2.3 bfd_default_reloc_type_lookup

Synopsis
 
reloc_howto_type *bfd_default_reloc_type_lookup
   (bfd *abfd, bfd_reloc_code_real_type  code);
Description
Provides a default relocation lookup routine for any architecture.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.2.4 bfd_get_reloc_code_name

Synopsis
 
const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
Description
Provides a printable name for the supplied relocation code. Useful mainly for printing error messages.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.2.5 bfd_generic_relax_section

Synopsis
 
bfd_boolean bfd_generic_relax_section
   (bfd *abfd,
    asection *section,
    struct bfd_link_info *,
    bfd_boolean *);
Description
Provides default handling for relaxing for back ends which don't do relaxing.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.2.6 bfd_generic_gc_sections

Synopsis
 
bfd_boolean bfd_generic_gc_sections
   (bfd *, struct bfd_link_info *);
Description
Provides default handling for relaxing for back ends which don't do section gc -- i.e., does nothing.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.2.7 bfd_generic_lookup_section_flags

Synopsis
 
bfd_boolean bfd_generic_lookup_section_flags
   (struct bfd_link_info *, struct flag_info *, asection *);
Description
Provides default handling for section flags lookup -- i.e., does nothing. Returns FALSE if the section should be omitted, otherwise TRUE.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.2.8 bfd_generic_merge_sections

Synopsis
 
bfd_boolean bfd_generic_merge_sections
   (bfd *, struct bfd_link_info *);
Description
Provides default handling for SEC_MERGE section merging for back ends which don't have SEC_MERGE support -- i.e., does nothing.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.10.2.9 bfd_generic_get_relocated_section_contents

Synopsis
 
bfd_byte *bfd_generic_get_relocated_section_contents
   (bfd *abfd,
    struct bfd_link_info *link_info,
    struct bfd_link_order *link_order,
    bfd_byte *data,
    bfd_boolean relocatable,
    asymbol **symbols);
Description
Provides default handling of relocation effort for back ends which can't be bothered to do it efficiently.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.11 Core files


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.11.1 Core file functions

Description
These are functions pertaining to core files.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.11.1.1 bfd_core_file_failing_command

Synopsis
 
const char *bfd_core_file_failing_command (bfd *abfd);
Description
Return a read-only string explaining which program was running when it failed and produced the core file abfd.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.11.1.2 bfd_core_file_failing_signal

Synopsis
 
int bfd_core_file_failing_signal (bfd *abfd);
Description
Returns the signal number which caused the core dump which generated the file the BFD abfd is attached to.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.11.1.3 bfd_core_file_pid

Synopsis
 
int bfd_core_file_pid (bfd *abfd);
Description
Returns the PID of the process the core dump the BFD abfd is attached to was generated from.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.11.1.4 core_file_matches_executable_p

Synopsis
 
bfd_boolean core_file_matches_executable_p
   (bfd *core_bfd, bfd *exec_bfd);
Description
Return TRUE if the core file attached to core_bfd was generated by a run of the executable file attached to exec_bfd, FALSE otherwise.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.11.1.5 generic_core_file_matches_executable_p

Synopsis
 
bfd_boolean generic_core_file_matches_executable_p
   (bfd *core_bfd, bfd *exec_bfd);
Description
Return TRUE if the core file attached to core_bfd was generated by a run of the executable file attached to exec_bfd. The match is based on executable basenames only.

Note: When not able to determine the core file failing command or the executable name, we still return TRUE even though we're not sure that core file and executable match. This is to avoid generating a false warning in situations where we really don't know whether they match or not.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.12 Targets

Description
Each port of BFD to a different machine requires the creation of a target back end. All the back end provides to the root part of BFD is a structure containing pointers to functions which perform certain low level operations on files. BFD translates the applications's requests through a pointer into calls to the back end routines.

When a file is opened with bfd_openr, its format and target are unknown. BFD uses various mechanisms to determine how to interpret the file. The operations performed are:

Once the BFD has been opened and the target selected, the file format may be determined. This is done by calling bfd_check_format on the BFD with a suggested format. If target_defaulted has been set, each possible target type is tried to see if it recognizes the specified format. bfd_check_format returns TRUE when the caller guesses right.
2.12.1 bfd_target  


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.12.1 bfd_target

Description
This structure contains everything that BFD knows about a target. It includes things like its byte order, name, and which routines to call to do various operations.

Every BFD points to a target structure with its xvec member.

The macros below are used to dispatch to functions through the bfd_target vector. They are used in a number of macros further down in `bfd.h', and are also used when calling various routines by hand inside the BFD implementation. The arglist argument must be parenthesized; it contains all the arguments to the called function.

They make the documentation (more) unpleasant to read, so if someone wants to fix this and not break the above, please do.
 
#define BFD_SEND(bfd, message, arglist) \
  ((*((bfd)->xvec->message)) arglist)

#ifdef DEBUG_BFD_SEND
#undef BFD_SEND
#define BFD_SEND(bfd, message, arglist) \
  (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
    ((*((bfd)->xvec->message)) arglist) : \
    (bfd_assert (__FILE__,__LINE__), NULL))
#endif
For operations which index on the BFD format:
 
#define BFD_SEND_FMT(bfd, message, arglist) \
  (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist)

#ifdef DEBUG_BFD_SEND
#undef BFD_SEND_FMT
#define BFD_SEND_FMT(bfd, message, arglist) \
  (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
   (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \
   (bfd_assert (__FILE__,__LINE__), NULL))
#endif

This is the structure which defines the type of BFD this is. The xvec member of the struct bfd itself points here. Each module that implements access to a different target under BFD, defines one of these.

FIXME, these names should be rationalised with the names of the entry points which call them. Too bad we can't have one macro to define them both!
 
enum bfd_flavour
{
  bfd_target_unknown_flavour,
  bfd_target_aout_flavour,
  bfd_target_coff_flavour,
  bfd_target_ecoff_flavour,
  bfd_target_xcoff_flavour,
  bfd_target_elf_flavour,
  bfd_target_ieee_flavour,
  bfd_target_nlm_flavour,
  bfd_target_oasys_flavour,
  bfd_target_tekhex_flavour,
  bfd_target_srec_flavour,
  bfd_target_verilog_flavour,
  bfd_target_ihex_flavour,
  bfd_target_som_flavour,
  bfd_target_os9k_flavour,
  bfd_target_versados_flavour,
  bfd_target_msdos_flavour,
  bfd_target_ovax_flavour,
  bfd_target_evax_flavour,
  bfd_target_mmo_flavour,
  bfd_target_mach_o_flavour,
  bfd_target_pef_flavour,
  bfd_target_pef_xlib_flavour,
  bfd_target_sym_flavour
};

enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN };

/* Forward declaration.  */
typedef struct bfd_link_info _bfd_link_info;

/* Forward declaration.  */
typedef struct flag_info flag_info;

typedef struct bfd_target
{
  /* Identifies the kind of target, e.g., SunOS4, Ultrix, etc.  */
  char *name;

 /* The "flavour" of a back end is a general indication about
    the contents of a file.  */
  enum bfd_flavour flavour;

  /* The order of bytes within the data area of a file.  */
  enum bfd_endian byteorder;

 /* The order of bytes within the header parts of a file.  */
  enum bfd_endian header_byteorder;

  /* A mask of all the flags which an executable may have set -
     from the set BFD_NO_FLAGS, HAS_RELOC, ...D_PAGED.  */
  flagword object_flags;

 /* A mask of all the flags which a section may have set - from
    the set SEC_NO_FLAGS, SEC_ALLOC, ...SET_NEVER_LOAD.  */
  flagword section_flags;

 /* The character normally found at the front of a symbol.
    (if any), perhaps `_'.  */
  char symbol_leading_char;

 /* The pad character for file names within an archive header.  */
  char ar_pad_char;

  /* The maximum number of characters in an archive header.  */
  unsigned char ar_max_namelen;

  /* How well this target matches, used to select between various
     possible targets when more than one target matches.  */
  unsigned char match_priority;

  /* Entries for byte swapping for data. These are different from the
     other entry points, since they don't take a BFD as the first argument.
     Certain other handlers could do the same.  */
  bfd_uint64_t   (*bfd_getx64) (const void *);
  bfd_int64_t    (*bfd_getx_signed_64) (const void *);
  void           (*bfd_putx64) (bfd_uint64_t, void *);
  bfd_vma        (*bfd_getx32) (const void *);
  bfd_signed_vma (*bfd_getx_signed_32) (const void *);
  void           (*bfd_putx32) (bfd_vma, void *);
  bfd_vma        (*bfd_getx16) (const void *);
  bfd_signed_vma (*bfd_getx_signed_16) (const void *);
  void           (*bfd_putx16) (bfd_vma, void *);

  /* Byte swapping for the headers.  */
  bfd_uint64_t   (*bfd_h_getx64) (const void *);
  bfd_int64_t    (*bfd_h_getx_signed_64) (const void *);
  void           (*bfd_h_putx64) (bfd_uint64_t, void *);
  bfd_vma        (*bfd_h_getx32) (const void *);
  bfd_signed_vma (*bfd_h_getx_signed_32) (const void *);
  void           (*bfd_h_putx32) (bfd_vma, void *);
  bfd_vma        (*bfd_h_getx16) (const void *);
  bfd_signed_vma (*bfd_h_getx_signed_16) (const void *);
  void           (*bfd_h_putx16) (bfd_vma, void *);

  /* Format dependent routines: these are vectors of entry points
     within the target vector structure, one for each format to check.  */

  /* Check the format of a file being read.  Return a bfd_target * or zero.  */
  const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *);

  /* Set the format of a file being written.  */
  bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *);

  /* Write cached information into a file being written, at bfd_close.  */
  bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *);

The general target vector. These vectors are initialized using the BFD_JUMP_TABLE macros.
 
  /* Generic entry points.  */
#define BFD_JUMP_TABLE_GENERIC(NAME) \
  NAME##_close_and_cleanup, \
  NAME##_bfd_free_cached_info, \
  NAME##_new_section_hook, \
  NAME##_get_section_contents, \
  NAME##_get_section_contents_in_window

  /* Called when the BFD is being closed to do any necessary cleanup.  */
  bfd_boolean (*_close_and_cleanup) (bfd *);
  /* Ask the BFD to free all cached information.  */
  bfd_boolean (*_bfd_free_cached_info) (bfd *);
  /* Called when a new section is created.  */
  bfd_boolean (*_new_section_hook) (bfd *, sec_ptr);
  /* Read the contents of a section.  */
  bfd_boolean (*_bfd_get_section_contents)
    (bfd *, sec_ptr, void *, file_ptr, bfd_size_type);
  bfd_boolean (*_bfd_get_section_contents_in_window)
    (bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type);

  /* Entry points to copy private data.  */
#define BFD_JUMP_TABLE_COPY(NAME) \
  NAME##_bfd_copy_private_bfd_data, \
  NAME##_bfd_merge_private_bfd_data, \
  _bfd_generic_init_private_section_data, \
  NAME##_bfd_copy_private_section_data, \
  NAME##_bfd_copy_private_symbol_data, \
  NAME##_bfd_copy_private_header_data, \
  NAME##_bfd_set_private_flags, \
  NAME##_bfd_print_private_bfd_data

  /* Called to copy BFD general private data from one object file
     to another.  */
  bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *);
  /* Called to merge BFD general private data from one object file
     to a common output file when linking.  */
  bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *);
  /* Called to initialize BFD private section data from one object file
     to another.  */
#define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \
  BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info))
  bfd_boolean (*_bfd_init_private_section_data)
    (bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *);
  /* Called to copy BFD private section data from one object file
     to another.  */
  bfd_boolean (*_bfd_copy_private_section_data)
    (bfd *, sec_ptr, bfd *, sec_ptr);
  /* Called to copy BFD private symbol data from one symbol
     to another.  */
  bfd_boolean (*_bfd_copy_private_symbol_data)
    (bfd *, asymbol *, bfd *, asymbol *);
  /* Called to copy BFD private header data from one object file
     to another.  */
  bfd_boolean (*_bfd_copy_private_header_data)
    (bfd *, bfd *);
  /* Called to set private backend flags.  */
  bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword);

  /* Called to print private BFD data.  */
  bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *);

  /* Core file entry points.  */
#define BFD_JUMP_TABLE_CORE(NAME) \
  NAME##_core_file_failing_command, \
  NAME##_core_file_failing_signal, \
  NAME##_core_file_matches_executable_p, \
  NAME##_core_file_pid

  char *      (*_core_file_failing_command) (bfd *);
  int         (*_core_file_failing_signal) (bfd *);
  bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *);
  int         (*_core_file_pid) (bfd *);

  /* Archive entry points.  */
#define BFD_JUMP_TABLE_ARCHIVE(NAME) \
  NAME##_slurp_armap, \
  NAME##_slurp_extended_name_table, \
  NAME##_construct_extended_name_table, \
  NAME##_truncate_arname, \
  NAME##_write_armap, \
  NAME##_read_ar_hdr, \
  NAME##_write_ar_hdr, \
  NAME##_openr_next_archived_file, \
  NAME##_get_elt_at_index, \
  NAME##_generic_stat_arch_elt, \
  NAME##_update_armap_timestamp

  bfd_boolean (*_bfd_slurp_armap) (bfd *);
  bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *);
  bfd_boolean (*_bfd_construct_extended_name_table)
    (bfd *, char **, bfd_size_type *, const char **);
  void        (*_bfd_truncate_arname) (bfd *, const char *, char *);
  bfd_boolean (*write_armap)
    (bfd *, unsigned int, struct orl *, unsigned int, int);
  void *      (*_bfd_read_ar_hdr_fn) (bfd *);
  bfd_boolean (*_bfd_write_ar_hdr_fn) (bfd *, bfd *);
  bfd *       (*openr_next_archived_file) (bfd *, bfd *);
#define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i))
  bfd *       (*_bfd_get_elt_at_index) (bfd *, symindex);
  int         (*_bfd_stat_arch_elt) (bfd *, struct stat *);
  bfd_boolean (*_bfd_update_armap_timestamp) (bfd *);

  /* Entry points used for symbols.  */
#define BFD_JUMP_TABLE_SYMBOLS(NAME) \
  NAME##_get_symtab_upper_bound, \
  NAME##_canonicalize_symtab, \
  NAME##_make_empty_symbol, \
  NAME##_print_symbol, \
  NAME##_get_symbol_info, \
  NAME##_bfd_is_local_label_name, \
  NAME##_bfd_is_target_special_symbol, \
  NAME##_get_lineno, \
  NAME##_find_nearest_line, \
  _bfd_generic_find_nearest_line_discriminator, \
  _bfd_generic_find_line, \
  NAME##_find_inliner_info, \
  NAME##_bfd_make_debug_symbol, \
  NAME##_read_minisymbols, \
  NAME##_minisymbol_to_symbol

  long        (*_bfd_get_symtab_upper_bound) (bfd *);
  long        (*_bfd_canonicalize_symtab)
    (bfd *, struct bfd_symbol **);
  struct bfd_symbol *
              (*_bfd_make_empty_symbol) (bfd *);
  void        (*_bfd_print_symbol)
    (bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type);
#define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e))
  void        (*_bfd_get_symbol_info)
    (bfd *, struct bfd_symbol *, symbol_info *);
#define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e))
  bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *);
  bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *);
  alent *     (*_get_lineno) (bfd *, struct bfd_symbol *);
  bfd_boolean (*_bfd_find_nearest_line)
    (bfd *, struct bfd_section *, struct bfd_symbol **, bfd_vma,
     const char **, const char **, unsigned int *);
  bfd_boolean (*_bfd_find_nearest_line_discriminator)
    (bfd *, struct bfd_section *, struct bfd_symbol **, bfd_vma,
     const char **, const char **, unsigned int *, unsigned int *);
  bfd_boolean (*_bfd_find_line)
    (bfd *, struct bfd_symbol **, struct bfd_symbol *,
     const char **, unsigned int *);
  bfd_boolean (*_bfd_find_inliner_info)
    (bfd *, const char **, const char **, unsigned int *);
 /* Back-door to allow format-aware applications to create debug symbols
    while using BFD for everything else.  Currently used by the assembler
    when creating COFF files.  */
  asymbol *   (*_bfd_make_debug_symbol)
    (bfd *, void *, unsigned long size);
#define bfd_read_minisymbols(b, d, m, s) \
  BFD_SEND (b, _read_minisymbols, (b, d, m, s))
  long        (*_read_minisymbols)
    (bfd *, bfd_boolean, void **, unsigned int *);
#define bfd_minisymbol_to_symbol(b, d, m, f) \
  BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f))
  asymbol *   (*_minisymbol_to_symbol)
    (bfd *, bfd_boolean, const void *, asymbol *);

  /* Routines for relocs.  */
#define BFD_JUMP_TABLE_RELOCS(NAME) \
  NAME##_get_reloc_upper_bound, \
  NAME##_canonicalize_reloc, \
  NAME##_bfd_reloc_type_lookup, \
  NAME##_bfd_reloc_name_lookup

  long        (*_get_reloc_upper_bound) (bfd *, sec_ptr);
  long        (*_bfd_canonicalize_reloc)
    (bfd *, sec_ptr, arelent **, struct bfd_symbol **);
  /* See documentation on reloc types.  */
  reloc_howto_type *
              (*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type);
  reloc_howto_type *
              (*reloc_name_lookup) (bfd *, const char *);


  /* Routines used when writing an object file.  */
#define BFD_JUMP_TABLE_WRITE(NAME) \
  NAME##_set_arch_mach, \
  NAME##_set_section_contents

  bfd_boolean (*_bfd_set_arch_mach)
    (bfd *, enum bfd_architecture, unsigned long);
  bfd_boolean (*_bfd_set_section_contents)
    (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type);

  /* Routines used by the linker.  */
#define BFD_JUMP_TABLE_LINK(NAME) \
  NAME##_sizeof_headers, \
  NAME##_bfd_get_relocated_section_contents, \
  NAME##_bfd_relax_section, \
  NAME##_bfd_link_hash_table_create, \
  NAME##_bfd_link_hash_table_free, \
  NAME##_bfd_link_add_symbols, \
  NAME##_bfd_link_just_syms, \
  NAME##_bfd_copy_link_hash_symbol_type, \
  NAME##_bfd_final_link, \
  NAME##_bfd_link_split_section, \
  NAME##_bfd_gc_sections, \
  NAME##_bfd_lookup_section_flags, \
  NAME##_bfd_merge_sections, \
  NAME##_bfd_is_group_section, \
  NAME##_bfd_discard_group, \
  NAME##_section_already_linked, \
  NAME##_bfd_define_common_symbol

  int         (*_bfd_sizeof_headers) (bfd *, struct bfd_link_info *);
  bfd_byte *  (*_bfd_get_relocated_section_contents)
    (bfd *, struct bfd_link_info *, struct bfd_link_order *,
     bfd_byte *, bfd_boolean, struct bfd_symbol **);

  bfd_boolean (*_bfd_relax_section)
    (bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *);

  /* Create a hash table for the linker.  Different backends store
     different information in this table.  */
  struct bfd_link_hash_table *
              (*_bfd_link_hash_table_create) (bfd *);

  /* Release the memory associated with the linker hash table.  */
  void        (*_bfd_link_hash_table_free) (struct bfd_link_hash_table *);

  /* Add symbols from this object file into the hash table.  */
  bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *);

  /* Indicate that we are only retrieving symbol values from this section.  */
  void        (*_bfd_link_just_syms) (asection *, struct bfd_link_info *);

  /* Copy the symbol type of a linker hash table entry.  */
#define bfd_copy_link_hash_symbol_type(b, t, f) \
  BFD_SEND (b, _bfd_copy_link_hash_symbol_type, (b, t, f))
  void (*_bfd_copy_link_hash_symbol_type)
    (bfd *, struct bfd_link_hash_entry *, struct bfd_link_hash_entry *);

  /* Do a link based on the link_order structures attached to each
     section of the BFD.  */
  bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *);

  /* Should this section be split up into smaller pieces during linking.  */
  bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *);

  /* Remove sections that are not referenced from the output.  */
  bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *);

  /* Sets the bitmask of allowed and disallowed section flags.  */
  bfd_boolean (*_bfd_lookup_section_flags) (struct bfd_link_info *,
                                            struct flag_info *,
                                            asection *);

  /* Attempt to merge SEC_MERGE sections.  */
  bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *);

  /* Is this section a member of a group?  */
  bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *);

  /* Discard members of a group.  */
  bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *);

  /* Check if SEC has been already linked during a reloceatable or
     final link.  */
  bfd_boolean (*_section_already_linked) (bfd *, asection *,
                                          struct bfd_link_info *);

  /* Define a common symbol.  */
  bfd_boolean (*_bfd_define_common_symbol) (bfd *, struct bfd_link_info *,
                                            struct bfd_link_hash_entry *);

  /* Routines to handle dynamic symbols and relocs.  */
#define BFD_JUMP_TABLE_DYNAMIC(NAME) \
  NAME##_get_dynamic_symtab_upper_bound, \
  NAME##_canonicalize_dynamic_symtab, \
  NAME##_get_synthetic_symtab, \
  NAME##_get_dynamic_reloc_upper_bound, \
  NAME##_canonicalize_dynamic_reloc

  /* Get the amount of memory required to hold the dynamic symbols.  */
  long        (*_bfd_get_dynamic_symtab_upper_bound) (bfd *);
  /* Read in the dynamic symbols.  */
  long        (*_bfd_canonicalize_dynamic_symtab)
    (bfd *, struct bfd_symbol **);
  /* Create synthetized symbols.  */
  long        (*_bfd_get_synthetic_symtab)
    (bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **,
     struct bfd_symbol **);
  /* Get the amount of memory required to hold the dynamic relocs.  */
  long        (*_bfd_get_dynamic_reloc_upper_bound) (bfd *);
  /* Read in the dynamic relocs.  */
  long        (*_bfd_canonicalize_dynamic_reloc)
    (bfd *, arelent **, struct bfd_symbol **);

A pointer to an alternative bfd_target in case the current one is not satisfactory. This can happen when the target cpu supports both big and little endian code, and target chosen by the linker has the wrong endianness. The function open_output() in ld/ldlang.c uses this field to find an alternative output format that is suitable.
 
  /* Opposite endian version of this target.  */
  const struct bfd_target * alternative_target;

  /* Data for use by back-end routines, which isn't
     generic enough to belong in this structure.  */
  const void *backend_data;

} bfd_target;


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.12.1.1 bfd_set_default_target

Synopsis
 
bfd_boolean bfd_set_default_target (const char *name);
Description
Set the default target vector to use when recognizing a BFD. This takes the name of the target, which may be a BFD target name or a configuration triplet.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.12.1.2 bfd_find_target

Synopsis
 
const bfd_target *bfd_find_target (const char *target_name, bfd *abfd);
Description
Return a pointer to the transfer vector for the object target named target_name. If target_name is NULL, choose the one in the environment variable GNUTARGET; if that is null or not defined, then choose the first entry in the target list. Passing in the string "default" or setting the environment variable to "default" will cause the first entry in the target list to be returned, and "target_defaulted" will be set in the BFD if abfd isn't NULL. This causes bfd_check_format to loop over all the targets to find the one that matches the file being read.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.12.1.3 bfd_get_target_info

Synopsis
 
const bfd_target *bfd_get_target_info (const char *target_name,
    bfd *abfd,
    bfd_boolean *is_bigendian,
    int *underscoring,
    const char **def_target_arch);
Description
Return a pointer to the transfer vector for the object target named target_name. If target_name is NULL, choose the one in the environment variable GNUTARGET; if that is null or not defined, then choose the first entry in the target list. Passing in the string "default" or setting the environment variable to "default" will cause the first entry in the target list to be returned, and "target_defaulted" will be set in the BFD if abfd isn't NULL. This causes bfd_check_format to loop over all the targets to find the one that matches the file being read. If is_bigendian is not NULL, then set this value to target's endian mode. True for big-endian, FALSE for little-endian or for invalid target. If underscoring is not NULL, then set this value to target's underscoring mode. Zero for none-underscoring, -1 for invalid target, else the value of target vector's symbol underscoring. If def_target_arch is not NULL, then set it to the architecture string specified by the target_name.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.12.1.4 bfd_target_list

Synopsis
 
const char ** bfd_target_list (void);
Description
Return a freshly malloced NULL-terminated vector of the names of all the valid BFD targets. Do not modify the names.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.12.1.5 bfd_seach_for_target

Synopsis
 
const bfd_target *bfd_search_for_target
   (int (*search_func) (const bfd_target *, void *),
    void *);
Description
Return a pointer to the first transfer vector in the list of transfer vectors maintained by BFD that produces a non-zero result when passed to the function search_func. The parameter data is passed, unexamined, to the search function.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13 Architectures

BFD keeps one atom in a BFD describing the architecture of the data attached to the BFD: a pointer to a bfd_arch_info_type.

Pointers to structures can be requested independently of a BFD so that an architecture's information can be interrogated without access to an open BFD.

The architecture information is provided by each architecture package. The set of default architectures is selected by the macro SELECT_ARCHITECTURES. This is normally set up in the `config/target.mt' file of your choice. If the name is not defined, then all the architectures supported are included.

When BFD starts up, all the architectures are called with an initialize method. It is up to the architecture back end to insert as many items into the list of architectures as it wants to; generally this would be one for each machine and one for the default case (an item with a machine field of 0).

BFD's idea of an architecture is implemented in `archures.c'.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.1 bfd_architecture

Description
This enum gives the object file's CPU architecture, in a global sense--i.e., what processor family does it belong to? Another field indicates which processor within the family is in use. The machine gives a number which distinguishes different versions of the architecture, containing, for example, 2 and 3 for Intel i960 KA and i960 KB, and 68020 and 68030 for Motorola 68020 and 68030.
 
enum bfd_architecture
{
  bfd_arch_unknown,   /* File arch not known.  */
  bfd_arch_obscure,   /* Arch known, not one of these.  */
  bfd_arch_m68k,      /* Motorola 68xxx */
#define bfd_mach_m68000 1
#define bfd_mach_m68008 2
#define bfd_mach_m68010 3
#define bfd_mach_m68020 4
#define bfd_mach_m68030 5
#define bfd_mach_m68040 6
#define bfd_mach_m68060 7
#define bfd_mach_cpu32  8
#define bfd_mach_fido   9
#define bfd_mach_mcf_isa_a_nodiv 10
#define bfd_mach_mcf_isa_a 11
#define bfd_mach_mcf_isa_a_mac 12
#define bfd_mach_mcf_isa_a_emac 13
#define bfd_mach_mcf_isa_aplus 14
#define bfd_mach_mcf_isa_aplus_mac 15
#define bfd_mach_mcf_isa_aplus_emac 16
#define bfd_mach_mcf_isa_b_nousp 17
#define bfd_mach_mcf_isa_b_nousp_mac 18
#define bfd_mach_mcf_isa_b_nousp_emac 19
#define bfd_mach_mcf_isa_b 20
#define bfd_mach_mcf_isa_b_mac 21
#define bfd_mach_mcf_isa_b_emac 22
#define bfd_mach_mcf_isa_b_float 23
#define bfd_mach_mcf_isa_b_float_mac 24
#define bfd_mach_mcf_isa_b_float_emac 25
#define bfd_mach_mcf_isa_c 26
#define bfd_mach_mcf_isa_c_mac 27
#define bfd_mach_mcf_isa_c_emac 28
#define bfd_mach_mcf_isa_c_nodiv 29
#define bfd_mach_mcf_isa_c_nodiv_mac 30
#define bfd_mach_mcf_isa_c_nodiv_emac 31
  bfd_arch_vax,       /* DEC Vax */
  bfd_arch_i960,      /* Intel 960 */
    /* The order of the following is important.
       lower number indicates a machine type that
       only accepts a subset of the instructions
       available to machines with higher numbers.
       The exception is the "ca", which is
       incompatible with all other machines except
       "core".  */

#define bfd_mach_i960_core      1
#define bfd_mach_i960_ka_sa     2
#define bfd_mach_i960_kb_sb     3
#define bfd_mach_i960_mc        4
#define bfd_mach_i960_xa        5
#define bfd_mach_i960_ca        6
#define bfd_mach_i960_jx        7
#define bfd_mach_i960_hx        8

  bfd_arch_or32,      /* OpenRISC 32 */

  bfd_arch_sparc,     /* SPARC */
#define bfd_mach_sparc                 1
/* The difference between v8plus and v9 is that v9 is a true 64 bit env.  */
#define bfd_mach_sparc_sparclet        2
#define bfd_mach_sparc_sparclite       3
#define bfd_mach_sparc_v8plus          4
#define bfd_mach_sparc_v8plusa         5 /* with ultrasparc add'ns.  */
#define bfd_mach_sparc_sparclite_le    6
#define bfd_mach_sparc_v9              7
#define bfd_mach_sparc_v9a             8 /* with ultrasparc add'ns.  */
#define bfd_mach_sparc_v8plusb         9 /* with cheetah add'ns.  */
#define bfd_mach_sparc_v9b             10 /* with cheetah add'ns.  */
/* Nonzero if MACH has the v9 instruction set.  */
#define bfd_mach_sparc_v9_p(mach) \
  ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \
   && (mach) != bfd_mach_sparc_sparclite_le)
/* Nonzero if MACH is a 64 bit sparc architecture.  */
#define bfd_mach_sparc_64bit_p(mach) \
  ((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb)
  bfd_arch_spu,       /* PowerPC SPU */
#define bfd_mach_spu           256
  bfd_arch_mips,      /* MIPS Rxxxx */
#define bfd_mach_mips3000              3000
#define bfd_mach_mips3900              3900
#define bfd_mach_mips4000              4000
#define bfd_mach_mips4010              4010
#define bfd_mach_mips4100              4100
#define bfd_mach_mips4111              4111
#define bfd_mach_mips4120              4120
#define bfd_mach_mips4300              4300
#define bfd_mach_mips4400              4400
#define bfd_mach_mips4600              4600
#define bfd_mach_mips4650              4650
#define bfd_mach_mips5000              5000
#define bfd_mach_mips5400              5400
#define bfd_mach_mips5500              5500
#define bfd_mach_mips5900              5900
#define bfd_mach_mips6000              6000
#define bfd_mach_mips7000              7000
#define bfd_mach_mips8000              8000
#define bfd_mach_mips9000              9000
#define bfd_mach_mips10000             10000
#define bfd_mach_mips12000             12000
#define bfd_mach_mips14000             14000
#define bfd_mach_mips16000             16000
#define bfd_mach_mips16                16
#define bfd_mach_mips5                 5
#define bfd_mach_mips_loongson_2e      3001
#define bfd_mach_mips_loongson_2f      3002
#define bfd_mach_mips_loongson_3a      3003
#define bfd_mach_mips_sb1              12310201 /* octal 'SB', 01 */
#define bfd_mach_mips_octeon           6501
#define bfd_mach_mips_octeonp          6601
#define bfd_mach_mips_octeon2          6502
#define bfd_mach_mips_xlr              887682   /* decimal 'XLR'  */
#define bfd_mach_mipsisa32             32
#define bfd_mach_mipsisa32r2           33
#define bfd_mach_mipsisa64             64
#define bfd_mach_mipsisa64r2           65
#define bfd_mach_mips_micromips        96
  bfd_arch_i386,      /* Intel 386 */
#define bfd_mach_i386_intel_syntax     (1 << 0)
#define bfd_mach_i386_i8086            (1 << 1)
#define bfd_mach_i386_i386             (1 << 2)
#define bfd_mach_x86_64                (1 << 3)
#define bfd_mach_x64_32                (1 << 4)
#define bfd_mach_i386_i386_intel_syntax (bfd_mach_i386_i386 | bfd_mach_i386_intel_syntax)
#define bfd_mach_x86_64_intel_syntax   (bfd_mach_x86_64 | bfd_mach_i386_intel_syntax)
#define bfd_mach_x64_32_intel_syntax   (bfd_mach_x64_32 | bfd_mach_i386_intel_syntax)
  bfd_arch_l1om,   /* Intel L1OM */
#define bfd_mach_l1om                  (1 << 5)
#define bfd_mach_l1om_intel_syntax     (bfd_mach_l1om | bfd_mach_i386_intel_syntax)
  bfd_arch_k1om,   /* Intel K1OM */
#define bfd_mach_k1om                  (1 << 6)
#define bfd_mach_k1om_intel_syntax     (bfd_mach_k1om | bfd_mach_i386_intel_syntax)
#define bfd_mach_i386_nacl             (1 << 7)
#define bfd_mach_i386_i386_nacl        (bfd_mach_i386_i386 | bfd_mach_i386_nacl)
#define bfd_mach_x86_64_nacl           (bfd_mach_x86_64 | bfd_mach_i386_nacl)
#define bfd_mach_x64_32_nacl           (bfd_mach_x64_32 | bfd_mach_i386_nacl)
  bfd_arch_we32k,     /* AT&T WE32xxx */
  bfd_arch_tahoe,     /* CCI/Harris Tahoe */
  bfd_arch_i860,      /* Intel 860 */
  bfd_arch_i370,      /* IBM 360/370 Mainframes */
  bfd_arch_romp,      /* IBM ROMP PC/RT */
  bfd_arch_convex,    /* Convex */
  bfd_arch_m88k,      /* Motorola 88xxx */
  bfd_arch_m98k,      /* Motorola 98xxx */
  bfd_arch_pyramid,   /* Pyramid Technology */
  bfd_arch_h8300,     /* Renesas H8/300 (formerly Hitachi H8/300) */
#define bfd_mach_h8300    1
#define bfd_mach_h8300h   2
#define bfd_mach_h8300s   3
#define bfd_mach_h8300hn  4
#define bfd_mach_h8300sn  5
#define bfd_mach_h8300sx  6
#define bfd_mach_h8300sxn 7
  bfd_arch_pdp11,     /* DEC PDP-11 */
  bfd_arch_plugin,
  bfd_arch_powerpc,   /* PowerPC */
#define bfd_mach_ppc           32
#define bfd_mach_ppc64         64
#define bfd_mach_ppc_403       403
#define bfd_mach_ppc_403gc     4030
#define bfd_mach_ppc_405       405
#define bfd_mach_ppc_505       505
#define bfd_mach_ppc_601       601
#define bfd_mach_ppc_602       602
#define bfd_mach_ppc_603       603
#define bfd_mach_ppc_ec603e    6031
#define bfd_mach_ppc_604       604
#define bfd_mach_ppc_620       620
#define bfd_mach_ppc_630       630
#define bfd_mach_ppc_750       750
#define bfd_mach_ppc_860       860
#define bfd_mach_ppc_a35       35
#define bfd_mach_ppc_rs64ii    642
#define bfd_mach_ppc_rs64iii   643
#define bfd_mach_ppc_7400      7400
#define bfd_mach_ppc_e500      500
#define bfd_mach_ppc_e500mc    5001
#define bfd_mach_ppc_e500mc64  5005
#define bfd_mach_ppc_e5500     5006
#define bfd_mach_ppc_e6500     5007
#define bfd_mach_ppc_titan     83
#define bfd_mach_ppc_vle       84
  bfd_arch_rs6000,    /* IBM RS/6000 */
#define bfd_mach_rs6k          6000
#define bfd_mach_rs6k_rs1      6001
#define bfd_mach_rs6k_rsc      6003
#define bfd_mach_rs6k_rs2      6002
  bfd_arch_hppa,      /* HP PA RISC */
#define bfd_mach_hppa10        10
#define bfd_mach_hppa11        11
#define bfd_mach_hppa20        20
#define bfd_mach_hppa20w       25
  bfd_arch_d10v,      /* Mitsubishi D10V */
#define bfd_mach_d10v          1
#define bfd_mach_d10v_ts2      2
#define bfd_mach_d10v_ts3      3
  bfd_arch_d30v,      /* Mitsubishi D30V */
  bfd_arch_dlx,       /* DLX */
  bfd_arch_m68hc11,   /* Motorola 68HC11 */
  bfd_arch_m68hc12,   /* Motorola 68HC12 */
#define bfd_mach_m6812_default 0
#define bfd_mach_m6812         1
#define bfd_mach_m6812s        2
  bfd_arch_m9s12x,   /* Freescale S12X */
  bfd_arch_m9s12xg,  /* Freescale XGATE */
  bfd_arch_z8k,       /* Zilog Z8000 */
#define bfd_mach_z8001         1
#define bfd_mach_z8002         2
  bfd_arch_h8500,     /* Renesas H8/500 (formerly Hitachi H8/500) */
  bfd_arch_sh,        /* Renesas / SuperH SH (formerly Hitachi SH) */
#define bfd_mach_sh            1
#define bfd_mach_sh2        0x20
#define bfd_mach_sh_dsp     0x2d
#define bfd_mach_sh2a       0x2a
#define bfd_mach_sh2a_nofpu 0x2b
#define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1
#define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2
#define bfd_mach_sh2a_or_sh4  0x2a3
#define bfd_mach_sh2a_or_sh3e 0x2a4
#define bfd_mach_sh2e       0x2e
#define bfd_mach_sh3        0x30
#define bfd_mach_sh3_nommu  0x31
#define bfd_mach_sh3_dsp    0x3d
#define bfd_mach_sh3e       0x3e
#define bfd_mach_sh4        0x40
#define bfd_mach_sh4_nofpu  0x41
#define bfd_mach_sh4_nommu_nofpu  0x42
#define bfd_mach_sh4a       0x4a
#define bfd_mach_sh4a_nofpu 0x4b
#define bfd_mach_sh4al_dsp  0x4d
#define bfd_mach_sh5        0x50
  bfd_arch_alpha,     /* Dec Alpha */
#define bfd_mach_alpha_ev4  0x10
#define bfd_mach_alpha_ev5  0x20
#define bfd_mach_alpha_ev6  0x30
  bfd_arch_arm,       /* Advanced Risc Machines ARM.  */
#define bfd_mach_arm_unknown   0
#define bfd_mach_arm_2         1
#define bfd_mach_arm_2a        2
#define bfd_mach_arm_3         3
#define bfd_mach_arm_3M        4
#define bfd_mach_arm_4         5
#define bfd_mach_arm_4T        6
#define bfd_mach_arm_5         7
#define bfd_mach_arm_5T        8
#define bfd_mach_arm_5TE       9
#define bfd_mach_arm_XScale    10
#define bfd_mach_arm_ep9312    11
#define bfd_mach_arm_iWMMXt    12
#define bfd_mach_arm_iWMMXt2   13
  bfd_arch_ns32k,     /* National Semiconductors ns32000 */
  bfd_arch_w65,       /* WDC 65816 */
  bfd_arch_tic30,     /* Texas Instruments TMS320C30 */
  bfd_arch_tic4x,     /* Texas Instruments TMS320C3X/4X */
#define bfd_mach_tic3x         30
#define bfd_mach_tic4x         40
  bfd_arch_tic54x,    /* Texas Instruments TMS320C54X */
  bfd_arch_tic6x,     /* Texas Instruments TMS320C6X */
  bfd_arch_tic80,     /* TI TMS320c80 (MVP) */
  bfd_arch_v850,      /* NEC V850 */
  bfd_arch_v850_rh850,/* NEC V850 (using RH850 ABI) */
#define bfd_mach_v850          1
#define bfd_mach_v850e         'E'
#define bfd_mach_v850e1        '1'
#define bfd_mach_v850e2        0x4532
#define bfd_mach_v850e2v3      0x45325633
#define bfd_mach_v850e3v5      0x45335635 /* ('E'|'3'|'V'|'5') */
  bfd_arch_arc,       /* ARC Cores */
#define bfd_mach_arc_5         5
#define bfd_mach_arc_6         6
#define bfd_mach_arc_7         7
#define bfd_mach_arc_8         8
 bfd_arch_m32c,     /* Renesas M16C/M32C.  */
#define bfd_mach_m16c        0x75
#define bfd_mach_m32c        0x78
  bfd_arch_m32r,      /* Renesas M32R (formerly Mitsubishi M32R/D) */
#define bfd_mach_m32r          1 /* For backwards compatibility.  */
#define bfd_mach_m32rx         'x'
#define bfd_mach_m32r2         '2'
  bfd_arch_mn10200,   /* Matsushita MN10200 */
  bfd_arch_mn10300,   /* Matsushita MN10300 */
#define bfd_mach_mn10300               300
#define bfd_mach_am33          330
#define bfd_mach_am33_2        332
  bfd_arch_fr30,
#define bfd_mach_fr30          0x46523330
  bfd_arch_frv,
#define bfd_mach_frv           1
#define bfd_mach_frvsimple     2
#define bfd_mach_fr300         300
#define bfd_mach_fr400         400
#define bfd_mach_fr450         450
#define bfd_mach_frvtomcat     499     /* fr500 prototype */
#define bfd_mach_fr500         500
#define bfd_mach_fr550         550
  bfd_arch_moxie,       /* The moxie processor */
#define bfd_mach_moxie         1
  bfd_arch_mcore,
  bfd_arch_mep,
#define bfd_mach_mep           1
#define bfd_mach_mep_h1        0x6831
#define bfd_mach_mep_c5        0x6335
  bfd_arch_metag,
#define bfd_mach_metag         1
  bfd_arch_ia64,      /* HP/Intel ia64 */
#define bfd_mach_ia64_elf64    64
#define bfd_mach_ia64_elf32    32
  bfd_arch_ip2k,      /* Ubicom IP2K microcontrollers. */
#define bfd_mach_ip2022        1
#define bfd_mach_ip2022ext     2
 bfd_arch_iq2000,     /* Vitesse IQ2000.  */
#define bfd_mach_iq2000        1
#define bfd_mach_iq10          2
  bfd_arch_epiphany,   /* Adapteva EPIPHANY */
#define bfd_mach_epiphany16    1
#define bfd_mach_epiphany32    2
  bfd_arch_lmp,        /* Hi-Core */
#define bfd_mach_lmp           1
  bfd_arch_mt,
#define bfd_mach_ms1           1
#define bfd_mach_mrisc2        2
#define bfd_mach_ms2           3
  bfd_arch_pj,
  bfd_arch_avr,       /* Atmel AVR microcontrollers.  */
#define bfd_mach_avr1          1
#define bfd_mach_avr2          2
#define bfd_mach_avr25         25
#define bfd_mach_avr3          3
#define bfd_mach_avr31         31
#define bfd_mach_avr35         35
#define bfd_mach_avr4          4
#define bfd_mach_avr5          5
#define bfd_mach_avr51         51
#define bfd_mach_avr6          6
#define bfd_mach_avrxmega1 101
#define bfd_mach_avrxmega2 102
#define bfd_mach_avrxmega3 103
#define bfd_mach_avrxmega4 104
#define bfd_mach_avrxmega5 105
#define bfd_mach_avrxmega6 106
#define bfd_mach_avrxmega7 107
  bfd_arch_bfin,        /* ADI Blackfin */
#define bfd_mach_bfin          1
  bfd_arch_cr16,       /* National Semiconductor CompactRISC (ie CR16). */
#define bfd_mach_cr16          1
  bfd_arch_cr16c,       /* National Semiconductor CompactRISC. */
#define bfd_mach_cr16c         1
  bfd_arch_crx,       /*  National Semiconductor CRX.  */
#define bfd_mach_crx           1
  bfd_arch_cris,      /* Axis CRIS */
#define bfd_mach_cris_v0_v10   255
#define bfd_mach_cris_v32      32
#define bfd_mach_cris_v10_v32  1032
  bfd_arch_rl78,
#define bfd_mach_rl78  0x75
  bfd_arch_rx,        /* Renesas RX.  */
#define bfd_mach_rx            0x75
  bfd_arch_s390,      /* IBM s390 */
#define bfd_mach_s390_31       31
#define bfd_mach_s390_64       64
  bfd_arch_score,     /* Sunplus score */
#define bfd_mach_score3         3
#define bfd_mach_score7         7
  bfd_arch_openrisc,  /* OpenRISC */
  bfd_arch_mmix,      /* Donald Knuth's educational processor.  */
  bfd_arch_xstormy16,
#define bfd_mach_xstormy16     1
  bfd_arch_msp430,    /* Texas Instruments MSP430 architecture.  */
#define bfd_mach_msp11          11
#define bfd_mach_msp110         110
#define bfd_mach_msp12          12
#define bfd_mach_msp13          13
#define bfd_mach_msp14          14
#define bfd_mach_msp15          15
#define bfd_mach_msp16          16
#define bfd_mach_msp20          20
#define bfd_mach_msp21          21
#define bfd_mach_msp22          22
#define bfd_mach_msp23          23
#define bfd_mach_msp24          24
#define bfd_mach_msp26          26
#define bfd_mach_msp31          31
#define bfd_mach_msp32          32
#define bfd_mach_msp33          33
#define bfd_mach_msp41          41
#define bfd_mach_msp42          42
#define bfd_mach_msp43          43
#define bfd_mach_msp44          44
#define bfd_mach_msp430x        45
#define bfd_mach_msp46          46
#define bfd_mach_msp47          47
#define bfd_mach_msp54          54
  bfd_arch_xc16x,     /* Infineon's XC16X Series.               */
#define bfd_mach_xc16x         1
#define bfd_mach_xc16xl        2
#define bfd_mach_xc16xs        3
  bfd_arch_xgate,   /* Freescale XGATE */
#define bfd_mach_xgate         1
  bfd_arch_xtensa,    /* Tensilica's Xtensa cores.  */
#define bfd_mach_xtensa        1
  bfd_arch_z80,
#define bfd_mach_z80strict      1 /* No undocumented opcodes.  */
#define bfd_mach_z80            3 /* With ixl, ixh, iyl, and iyh.  */
#define bfd_mach_z80full        7 /* All undocumented instructions.  */
#define bfd_mach_r800           11 /* R800: successor with multiplication.  */
  bfd_arch_lm32,      /* Lattice Mico32 */
#define bfd_mach_lm32      1
  bfd_arch_microblaze,/* Xilinx MicroBlaze. */
  bfd_arch_tilepro,   /* Tilera TILEPro */
  bfd_arch_tilegx, /* Tilera TILE-Gx */
#define bfd_mach_tilepro   1
#define bfd_mach_tilegx    1
#define bfd_mach_tilegx32  2
  bfd_arch_aarch64,   /* AArch64  */
#define bfd_mach_aarch64 0
#define bfd_mach_aarch64_ilp32 32
  bfd_arch_nios2,
#define bfd_mach_nios2 0
  bfd_arch_last
  };


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2 bfd_arch_info

Description
This structure contains information on architectures for use within BFD.
 
typedef struct bfd_arch_info
{
  int bits_per_word;
  int bits_per_address;
  int bits_per_byte;
  enum bfd_architecture arch;
  unsigned long mach;
  const char *arch_name;
  const char *printable_name;
  unsigned int section_align_power;
  /* TRUE if this is the default machine for the architecture.
     The default arch should be the first entry for an arch so that
     all the entries for that arch can be accessed via next.  */
  bfd_boolean the_default;
  const struct bfd_arch_info * (*compatible)
    (const struct bfd_arch_info *a, const struct bfd_arch_info *b);

  bfd_boolean (*scan) (const struct bfd_arch_info *, const char *);

  /* Allocate via bfd_malloc and return a fill buffer of size COUNT.  If
     IS_BIGENDIAN is TRUE, the order of bytes is big endian.  If CODE is
     TRUE, the buffer contains code.  */
  void *(*fill) (bfd_size_type count, bfd_boolean is_bigendian,
                 bfd_boolean code);

  const struct bfd_arch_info *next;
}
bfd_arch_info_type;


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.1 bfd_printable_name

Synopsis
 
const char *bfd_printable_name (bfd *abfd);
Description
Return a printable string representing the architecture and machine from the pointer to the architecture info structure.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.2 bfd_scan_arch

Synopsis
 
const bfd_arch_info_type *bfd_scan_arch (const char *string);
Description
Figure out if BFD supports any cpu which could be described with the name string. Return a pointer to an arch_info structure if a machine is found, otherwise NULL.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.3 bfd_arch_list

Synopsis
 
const char **bfd_arch_list (void);
Description
Return a freshly malloced NULL-terminated vector of the names of all the valid BFD architectures. Do not modify the names.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.4 bfd_arch_get_compatible

Synopsis
 
const bfd_arch_info_type *bfd_arch_get_compatible
   (const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns);
Description
Determine whether two BFDs' architectures and machine types are compatible. Calculates the lowest common denominator between the two architectures and machine types implied by the BFDs and returns a pointer to an arch_info structure describing the compatible machine.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.5 bfd_default_arch_struct

Description
The bfd_default_arch_struct is an item of bfd_arch_info_type which has been initialized to a fairly generic state. A BFD starts life by pointing to this structure, until the correct back end has determined the real architecture of the file.
 
extern const bfd_arch_info_type bfd_default_arch_struct;


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.6 bfd_set_arch_info

Synopsis
 
void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg);
Description
Set the architecture info of abfd to arg.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.7 bfd_default_set_arch_mach

Synopsis
 
bfd_boolean bfd_default_set_arch_mach
   (bfd *abfd, enum bfd_architecture arch, unsigned long mach);
Description
Set the architecture and machine type in BFD abfd to arch and mach. Find the correct pointer to a structure and insert it into the arch_info pointer.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.8 bfd_get_arch

Synopsis
 
enum bfd_architecture bfd_get_arch (bfd *abfd);
Description
Return the enumerated type which describes the BFD abfd's architecture.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.9 bfd_get_mach

Synopsis
 
unsigned long bfd_get_mach (bfd *abfd);
Description
Return the long type which describes the BFD abfd's machine.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.10 bfd_arch_bits_per_byte

Synopsis
 
unsigned int bfd_arch_bits_per_byte (bfd *abfd);
Description
Return the number of bits in one of the BFD abfd's architecture's bytes.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.11 bfd_arch_bits_per_address

Synopsis
 
unsigned int bfd_arch_bits_per_address (bfd *abfd);
Description
Return the number of bits in one of the BFD abfd's architecture's addresses.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.12 bfd_default_compatible

Synopsis
 
const bfd_arch_info_type *bfd_default_compatible
   (const bfd_arch_info_type *a, const bfd_arch_info_type *b);
Description
The default function for testing for compatibility.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.13 bfd_default_scan

Synopsis
 
bfd_boolean bfd_default_scan
   (const struct bfd_arch_info *info, const char *string);
Description
The default function for working out whether this is an architecture hit and a machine hit.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.14 bfd_get_arch_info

Synopsis
 
const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd);
Description
Return the architecture info struct in abfd.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.15 bfd_lookup_arch

Synopsis
 
const bfd_arch_info_type *bfd_lookup_arch
   (enum bfd_architecture arch, unsigned long machine);
Description
Look for the architecture info structure which matches the arguments arch and machine. A machine of 0 matches the machine/architecture structure which marks itself as the default.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.16 bfd_printable_arch_mach

Synopsis
 
const char *bfd_printable_arch_mach
   (enum bfd_architecture arch, unsigned long machine);
Description
Return a printable string representing the architecture and machine type.

This routine is depreciated.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.17 bfd_octets_per_byte

Synopsis
 
unsigned int bfd_octets_per_byte (bfd *abfd);
Description
Return the number of octets (8-bit quantities) per target byte (minimum addressable unit). In most cases, this will be one, but some DSP targets have 16, 32, or even 48 bits per byte.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.18 bfd_arch_mach_octets_per_byte

Synopsis
 
unsigned int bfd_arch_mach_octets_per_byte
   (enum bfd_architecture arch, unsigned long machine);
Description
See bfd_octets_per_byte.

This routine is provided for those cases where a bfd * is not available


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.13.2.19 bfd_arch_default_fill

Synopsis
 
void *bfd_arch_default_fill (bfd_size_type count,
    bfd_boolean is_bigendian,
    bfd_boolean code);
Description
Allocate via bfd_malloc and return a fill buffer of size COUNT. If IS_BIGENDIAN is TRUE, the order of bytes is big endian. If CODE is TRUE, the buffer contains code.

 
/* Set to N to open the next N BFDs using an alternate id space.  */
extern unsigned int bfd_use_reserved_id;


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14 Opening and closing BFDs


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1 Functions for opening and closing


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.1 bfd_fopen

Synopsis
 
bfd *bfd_fopen (const char *filename, const char *target,
    const char *mode, int fd);
Description
Open the file filename with the target target. Return a pointer to the created BFD. If fd is not -1, then fdopen is used to open the file; otherwise, fopen is used. mode is passed directly to fopen or fdopen.

Calls bfd_find_target, so target is interpreted as by that function.

The new BFD is marked as cacheable iff fd is -1.

If NULL is returned then an error has occured. Possible errors are bfd_error_no_memory, bfd_error_invalid_target or system_call error.

On error, fd is always closed.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.2 bfd_openr

Synopsis
 
bfd *bfd_openr (const char *filename, const char *target);
Description
Open the file filename (using fopen) with the target target. Return a pointer to the created BFD.

Calls bfd_find_target, so target is interpreted as by that function.

If NULL is returned then an error has occured. Possible errors are bfd_error_no_memory, bfd_error_invalid_target or system_call error.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.3 bfd_fdopenr

Synopsis
 
bfd *bfd_fdopenr (const char *filename, const char *target, int fd);
Description
bfd_fdopenr is to bfd_fopenr much like fdopen is to fopen. It opens a BFD on a file already described by the fd supplied.

When the file is later bfd_closed, the file descriptor will be closed. If the caller desires that this file descriptor be cached by BFD (opened as needed, closed as needed to free descriptors for other opens), with the supplied fd used as an initial file descriptor (but subject to closure at any time), call bfd_set_cacheable(bfd, 1) on the returned BFD. The default is to assume no caching; the file descriptor will remain open until bfd_close, and will not be affected by BFD operations on other files.

Possible errors are bfd_error_no_memory, bfd_error_invalid_target and bfd_error_system_call.

On error, fd is closed.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.4 bfd_openstreamr

Synopsis
 
bfd *bfd_openstreamr (const char *, const char *, void *);
Description
Open a BFD for read access on an existing stdio stream. When the BFD is passed to bfd_close, the stream will be closed.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.5 bfd_openr_iovec

Synopsis
 
bfd *bfd_openr_iovec (const char *filename, const char *target,
    void *(*open_func) (struct bfd *nbfd,
    void *open_closure),
    void *open_closure,
    file_ptr (*pread_func) (struct bfd *nbfd,
    void *stream,
    void *buf,
    file_ptr nbytes,
    file_ptr offset),
    int (*close_func) (struct bfd *nbfd,
    void *stream),
    int (*stat_func) (struct bfd *abfd,
    void *stream,
    struct stat *sb));
Description
Create and return a BFD backed by a read-only stream. The stream is created using open_func, accessed using pread_func and destroyed using close_func.

Calls bfd_find_target, so target is interpreted as by that function.

Calls open_func (which can call bfd_zalloc and bfd_get_filename) to obtain the read-only stream backing the BFD. open_func either succeeds returning the non-NULL stream, or fails returning NULL (setting bfd_error).

Calls pread_func to request nbytes of data from stream starting at offset (e.g., via a call to bfd_read). pread_func either succeeds returning the number of bytes read (which can be less than nbytes when end-of-file), or fails returning -1 (setting bfd_error).

Calls close_func when the BFD is later closed using bfd_close. close_func either succeeds returning 0, or fails returning -1 (setting bfd_error).

Calls stat_func to fill in a stat structure for bfd_stat, bfd_get_size, and bfd_get_mtime calls. stat_func returns 0 on success, or returns -1 on failure (setting bfd_error).

If bfd_openr_iovec returns NULL then an error has occurred. Possible errors are bfd_error_no_memory, bfd_error_invalid_target and bfd_error_system_call.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.6 bfd_openw

Synopsis
 
bfd *bfd_openw (const char *filename, const char *target);
Description
Create a BFD, associated with file filename, using the file format target, and return a pointer to it.

Possible errors are bfd_error_system_call, bfd_error_no_memory, bfd_error_invalid_target.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.7 bfd_close

Synopsis
 
bfd_boolean bfd_close (bfd *abfd);
Description
Close a BFD. If the BFD was open for writing, then pending operations are completed and the file written out and closed. If the created file is executable, then chmod is called to mark it as such.

All memory attached to the BFD is released.

The file descriptor associated with the BFD is closed (even if it was passed in to BFD by bfd_fdopenr).

Returns
TRUE is returned if all is ok, otherwise FALSE.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.8 bfd_close_all_done

Synopsis
 
bfd_boolean bfd_close_all_done (bfd *);
Description
Close a BFD. Differs from bfd_close since it does not complete any pending operations. This routine would be used if the application had just used BFD for swapping and didn't want to use any of the writing code.

If the created file is executable, then chmod is called to mark it as such.

All memory attached to the BFD is released.

Returns
TRUE is returned if all is ok, otherwise FALSE.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.9 bfd_create

Synopsis
 
bfd *bfd_create (const char *filename, bfd *templ);
Description
Create a new BFD in the manner of bfd_openw, but without opening a file. The new BFD takes the target from the target used by templ. The format is always set to bfd_object.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.10 bfd_make_writable

Synopsis
 
bfd_boolean bfd_make_writable (bfd *abfd);
Description
Takes a BFD as created by bfd_create and converts it into one like as returned by bfd_openw. It does this by converting the BFD to BFD_IN_MEMORY. It's assumed that you will call bfd_make_readable on this bfd later.

Returns
TRUE is returned if all is ok, otherwise FALSE.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.11 bfd_make_readable

Synopsis
 
bfd_boolean bfd_make_readable (bfd *abfd);
Description
Takes a BFD as created by bfd_create and bfd_make_writable and converts it into one like as returned by bfd_openr. It does this by writing the contents out to the memory buffer, then reversing the direction.

Returns
TRUE is returned if all is ok, otherwise FALSE.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.12 bfd_alloc

Synopsis
 
void *bfd_alloc (bfd *abfd, bfd_size_type wanted);
Description
Allocate a block of wanted bytes of memory attached to abfd and return a pointer to it.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.13 bfd_alloc2

Synopsis
 
void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
Description
Allocate a block of nmemb elements of size bytes each of memory attached to abfd and return a pointer to it.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.14 bfd_zalloc

Synopsis
 
void *bfd_zalloc (bfd *abfd, bfd_size_type wanted);
Description
Allocate a block of wanted bytes of zeroed memory attached to abfd and return a pointer to it.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.15 bfd_zalloc2

Synopsis
 
void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
Description
Allocate a block of nmemb elements of size bytes each of zeroed memory attached to abfd and return a pointer to it.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.16 bfd_calc_gnu_debuglink_crc32

Synopsis
 
unsigned long bfd_calc_gnu_debuglink_crc32
   (unsigned long crc, const unsigned char *buf, bfd_size_type len);
Description
Computes a CRC value as used in the .gnu_debuglink section. Advances the previously computed crc value by computing and adding in the crc32 for len bytes of buf.

Returns
Return the updated CRC32 value.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.17 bfd_get_debug_link_info

Synopsis
 
char *bfd_get_debug_link_info (bfd *abfd, unsigned long *crc32_out);
Description
fetch the filename and CRC32 value for any separate debuginfo associated with abfd. Return NULL if no such info found, otherwise return filename and update crc32_out. The returned filename is allocated with malloc; freeing it is the responsibility of the caller.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.18 bfd_get_alt_debug_link_info

Synopsis
 
char *bfd_get_alt_debug_link_info (bfd * abfd,
    bfd_size_type *buildid_len,
    bfd_byte **buildid_out);
Description
Fetch the filename and BuildID value for any alternate debuginfo associated with abfd. Return NULL if no such info found, otherwise return filename and update buildid_len and buildid_out. The returned filename and build_id are allocated with malloc; freeing them is the responsibility of the caller.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.19 separate_debug_file_exists

Synopsis
 
bfd_boolean separate_debug_file_exists
   (char *name, unsigned long crc32);
Description
Checks to see if name is a file and if its contents match crc32.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.20 separate_alt_debug_file_exists

Synopsis
 
bfd_boolean separate_alt_debug_file_exists
   (char *name, unsigned long crc32);
Description
Checks to see if name is a file and if its BuildID matches buildid.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.21 find_separate_debug_file

Synopsis
 
char *find_separate_debug_file (bfd *abfd);
Description
Searches abfd for a section called section_name which is expected to contain a reference to a file containing separate debugging information. The function scans various locations in the filesystem, including the file tree rooted at debug_file_directory, and returns the first matching filename that it finds. If check_crc is TRUE then the contents of the file must also match the CRC value contained in section_name. Returns NULL if no valid file could be found.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.22 bfd_follow_gnu_debuglink

Synopsis
 
char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir);
Description
Takes a BFD and searches it for a .gnu_debuglink section. If this section is found, it examines the section for the name and checksum of a '.debug' file containing auxiliary debugging information. It then searches the filesystem for this .debug file in some standard locations, including the directory tree rooted at dir, and if found returns the full filename.

If dir is NULL, it will search a default path configured into libbfd at build time. [XXX this feature is not currently implemented].

Returns
NULL on any errors or failure to locate the .debug file, otherwise a pointer to a heap-allocated string containing the filename. The caller is responsible for freeing this string.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.23 bfd_follow_gnu_debugaltlink

Synopsis
 
char *bfd_follow_gnu_debugaltlink (bfd *abfd, const char *dir);
Description
Takes a BFD and searches it for a .gnu_debugaltlink section. If this section is found, it examines the section for the name of a file containing auxiliary debugging information. It then searches the filesystem for this file in a set of standard locations, including the directory tree rooted at dir, and if found returns the full filename.

If dir is NULL, it will search a default path configured into libbfd at build time. [FIXME: This feature is not currently implemented].

Returns
NULL on any errors or failure to locate the debug file, otherwise a pointer to a heap-allocated string containing the filename. The caller is responsible for freeing this string.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.24 bfd_create_gnu_debuglink_section

Synopsis
 
struct bfd_section *bfd_create_gnu_debuglink_section
   (bfd *abfd, const char *filename);
Description
Takes a BFD and adds a .gnu_debuglink section to it. The section is sized to be big enough to contain a link to the specified filename.

Returns
A pointer to the new section is returned if all is ok. Otherwise NULL is returned and bfd_error is set.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.14.1.25 bfd_fill_in_gnu_debuglink_section

Synopsis
 
bfd_boolean bfd_fill_in_gnu_debuglink_section
   (bfd *abfd, struct bfd_section *sect, const char *filename);
Description
Takes a BFD and containing a .gnu_debuglink section SECT and fills in the contents of the section to contain a link to the specified filename. The filename should be relative to the current directory.

Returns
TRUE is returned if all is ok. Otherwise FALSE is returned and bfd_error is set.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.15 Implementation details


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.15.1 Internal functions

Description
These routines are used within BFD. They are not intended for export, but are documented here for completeness.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.15.1.1 bfd_write_bigendian_4byte_int

Synopsis
 
bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int);
Description
Write a 4 byte integer i to the output BFD abfd, in big endian order regardless of what else is going on. This is useful in archives.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.15.1.2 bfd_put_size


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.15.1.3 bfd_get_size

Description
These macros as used for reading and writing raw data in sections; each access (except for bytes) is vectored through the target format of the BFD and mangled accordingly. The mangling performs any necessary endian translations and removes alignment restrictions. Note that types accepted and returned by these macros are identical so they can be swapped around in macros--for example, `libaout.h' defines GET_WORD to either bfd_get_32 or bfd_get_64.

In the put routines, val must be a bfd_vma. If we are on a system without prototypes, the caller is responsible for making sure that is true, with a cast if necessary. We don't cast them in the macro definitions because that would prevent lint or gcc -Wall from detecting sins such as passing a pointer. To detect calling these with less than a bfd_vma, use gcc -Wconversion on a host with 64 bit bfd_vma's.
 
/* Byte swapping macros for user section data.  */

#define bfd_put_8(abfd, val, ptr) \
  ((void) (*((unsigned char *) (ptr)) = (val) & 0xff))
#define bfd_put_signed_8 \
  bfd_put_8
#define bfd_get_8(abfd, ptr) \
  (*(const unsigned char *) (ptr) & 0xff)
#define bfd_get_signed_8(abfd, ptr) \
  (((*(const unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80)

#define bfd_put_16(abfd, val, ptr) \
  BFD_SEND (abfd, bfd_putx16, ((val),(ptr)))
#define bfd_put_signed_16 \
  bfd_put_16
#define bfd_get_16(abfd, ptr) \
  BFD_SEND (abfd, bfd_getx16, (ptr))
#define bfd_get_signed_16(abfd, ptr) \
  BFD_SEND (abfd, bfd_getx_signed_16, (ptr))

#define bfd_put_32(abfd, val, ptr) \
  BFD_SEND (abfd, bfd_putx32, ((val),(ptr)))
#define bfd_put_signed_32 \
  bfd_put_32
#define bfd_get_32(abfd, ptr) \
  BFD_SEND (abfd, bfd_getx32, (ptr))
#define bfd_get_signed_32(abfd, ptr) \
  BFD_SEND (abfd, bfd_getx_signed_32, (ptr))

#define bfd_put_64(abfd, val, ptr) \
  BFD_SEND (abfd, bfd_putx64, ((val), (ptr)))
#define bfd_put_signed_64 \
  bfd_put_64
#define bfd_get_64(abfd, ptr) \
  BFD_SEND (abfd, bfd_getx64, (ptr))
#define bfd_get_signed_64(abfd, ptr) \
  BFD_SEND (abfd, bfd_getx_signed_64, (ptr))

#define bfd_get(bits, abfd, ptr)                       \
  ((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr)       \
   : (bits) == 16 ? bfd_get_16 (abfd, ptr)             \
   : (bits) == 32 ? bfd_get_32 (abfd, ptr)             \
   : (bits) == 64 ? bfd_get_64 (abfd, ptr)             \
   : (abort (), (bfd_vma) - 1))

#define bfd_put(bits, abfd, val, ptr)                  \
  ((bits) == 8 ? bfd_put_8  (abfd, val, ptr)           \
   : (bits) == 16 ? bfd_put_16 (abfd, val, ptr)                \
   : (bits) == 32 ? bfd_put_32 (abfd, val, ptr)                \
   : (bits) == 64 ? bfd_put_64 (abfd, val, ptr)                \
   : (abort (), (void) 0))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.15.1.4 bfd_h_put_size

Description
These macros have the same function as their bfd_get_x brethren, except that they are used for removing information for the header records of object files. Believe it or not, some object files keep their header records in big endian order and their data in little endian order.
 
/* Byte swapping macros for file header data.  */

#define bfd_h_put_8(abfd, val, ptr) \
  bfd_put_8 (abfd, val, ptr)
#define bfd_h_put_signed_8(abfd, val, ptr) \
  bfd_put_8 (abfd, val, ptr)
#define bfd_h_get_8(abfd, ptr) \
  bfd_get_8 (abfd, ptr)
#define bfd_h_get_signed_8(abfd, ptr) \
  bfd_get_signed_8 (abfd, ptr)

#define bfd_h_put_16(abfd, val, ptr) \
  BFD_SEND (abfd, bfd_h_putx16, (val, ptr))
#define bfd_h_put_signed_16 \
  bfd_h_put_16
#define bfd_h_get_16(abfd, ptr) \
  BFD_SEND (abfd, bfd_h_getx16, (ptr))
#define bfd_h_get_signed_16(abfd, ptr) \
  BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr))

#define bfd_h_put_32(abfd, val, ptr) \
  BFD_SEND (abfd, bfd_h_putx32, (val, ptr))
#define bfd_h_put_signed_32 \
  bfd_h_put_32
#define bfd_h_get_32(abfd, ptr) \
  BFD_SEND (abfd, bfd_h_getx32, (ptr))
#define bfd_h_get_signed_32(abfd, ptr) \
  BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr))

#define bfd_h_put_64(abfd, val, ptr) \
  BFD_SEND (abfd, bfd_h_putx64, (val, ptr))
#define bfd_h_put_signed_64 \
  bfd_h_put_64
#define bfd_h_get_64(abfd, ptr) \
  BFD_SEND (abfd, bfd_h_getx64, (ptr))
#define bfd_h_get_signed_64(abfd, ptr) \
  BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr))

/* Aliases for the above, which should eventually go away.  */

#define H_PUT_64  bfd_h_put_64
#define H_PUT_32  bfd_h_put_32
#define H_PUT_16  bfd_h_put_16
#define H_PUT_8   bfd_h_put_8
#define H_PUT_S64 bfd_h_put_signed_64
#define H_PUT_S32 bfd_h_put_signed_32
#define H_PUT_S16 bfd_h_put_signed_16
#define H_PUT_S8  bfd_h_put_signed_8
#define H_GET_64  bfd_h_get_64
#define H_GET_32  bfd_h_get_32
#define H_GET_16  bfd_h_get_16
#define H_GET_8   bfd_h_get_8
#define H_GET_S64 bfd_h_get_signed_64
#define H_GET_S32 bfd_h_get_signed_32
#define H_GET_S16 bfd_h_get_signed_16
#define H_GET_S8  bfd_h_get_signed_8



[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.15.1.5 bfd_log2

Synopsis
 
unsigned int bfd_log2 (bfd_vma x);
Description
Return the log base 2 of the value supplied, rounded up. E.g., an x of 1025 returns 11. A x of 0 returns 0.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.16 File caching

The file caching mechanism is embedded within BFD and allows the application to open as many BFDs as it wants without regard to the underlying operating system's file descriptor limit (often as low as 20 open files). The module in cache.c maintains a least recently used list of bfd_cache_max_open files, and exports the name bfd_cache_lookup, which runs around and makes sure that the required BFD is open. If not, then it chooses a file to close, closes it and opens the one wanted, returning its file handle.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.16.1 Caching functions


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.16.1.1 bfd_cache_init

Synopsis
 
bfd_boolean bfd_cache_init (bfd *abfd);
Description
Add a newly opened BFD to the cache.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.16.1.2 bfd_cache_close

Synopsis
 
bfd_boolean bfd_cache_close (bfd *abfd);
Description
Remove the BFD abfd from the cache. If the attached file is open, then close it too.

Returns
FALSE is returned if closing the file fails, TRUE is returned if all is well.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.16.1.3 bfd_cache_close_all

Synopsis
 
bfd_boolean bfd_cache_close_all (void);
Description
Remove all BFDs from the cache. If the attached file is open, then close it too.

Returns
FALSE is returned if closing one of the file fails, TRUE is returned if all is well.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.16.1.4 bfd_open_file

Synopsis
 
FILE* bfd_open_file (bfd *abfd);
Description
Call the OS to open a file for abfd. Return the FILE * (possibly NULL) that results from this operation. Set up the BFD so that future accesses know the file is open. If the FILE * returned is NULL, then it won't have been put in the cache, so it won't have to be removed from it.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17 Linker Functions

The linker uses three special entry points in the BFD target vector. It is not necessary to write special routines for these entry points when creating a new BFD back end, since generic versions are provided. However, writing them can speed up linking and make it use significantly less runtime memory.

The first routine creates a hash table used by the other routines. The second routine adds the symbols from an object file to the hash table. The third routine takes all the object files and links them together to create the output file. These routines are designed so that the linker proper does not need to know anything about the symbols in the object files that it is linking. The linker merely arranges the sections as directed by the linker script and lets BFD handle the details of symbols and relocs.

The second routine and third routines are passed a pointer to a struct bfd_link_info structure (defined in bfdlink.h) which holds information relevant to the link, including the linker hash table (which was created by the first routine) and a set of callback functions to the linker proper.

The generic linker routines are in linker.c, and use the header file genlink.h. As of this writing, the only back ends which have implemented versions of these routines are a.out (in aoutx.h) and ECOFF (in ecoff.c). The a.out routines are used as examples throughout this section.

2.17.1 Creating a linker hash table  
2.17.2 Adding symbols to the hash table  
2.17.3 Performing the final link  


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.1 Creating a linker hash table

The linker routines must create a hash table, which must be derived from struct bfd_link_hash_table described in bfdlink.c. See section 2.18 Hash Tables, for information on how to create a derived hash table. This entry point is called using the target vector of the linker output file.

The _bfd_link_hash_table_create entry point must allocate and initialize an instance of the desired hash table. If the back end does not require any additional information to be stored with the entries in the hash table, the entry point may simply create a struct bfd_link_hash_table. Most likely, however, some additional information will be needed.

For example, with each entry in the hash table the a.out linker keeps the index the symbol has in the final output file (this index number is used so that when doing a relocatable link the symbol index used in the output file can be quickly filled in when copying over a reloc). The a.out linker code defines the required structures and functions for a hash table derived from struct bfd_link_hash_table. The a.out linker hash table is created by the function NAME(aout,link_hash_table_create); it simply allocates space for the hash table, initializes it, and returns a pointer to it.

When writing the linker routines for a new back end, you will generally not know exactly which fields will be required until you have finished. You should simply create a new hash table which defines no additional fields, and then simply add fields as they become necessary.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.2 Adding symbols to the hash table

The linker proper will call the _bfd_link_add_symbols entry point for each object file or archive which is to be linked (typically these are the files named on the command line, but some may also come from the linker script). The entry point is responsible for examining the file. For an object file, BFD must add any relevant symbol information to the hash table. For an archive, BFD must determine which elements of the archive should be used and adding them to the link.

The a.out version of this entry point is NAME(aout,link_add_symbols).

2.17.2.1 Differing file formats  
2.17.2.2 Adding symbols from an object file  
2.17.2.3 Adding symbols from an archive  


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.2.1 Differing file formats

Normally all the files involved in a link will be of the same format, but it is also possible to link together different format object files, and the back end must support that. The _bfd_link_add_symbols entry point is called via the target vector of the file to be added. This has an important consequence: the function may not assume that the hash table is the type created by the corresponding _bfd_link_hash_table_create vector. All the _bfd_link_add_symbols function can assume about the hash table is that it is derived from struct bfd_link_hash_table.

Sometimes the _bfd_link_add_symbols function must store some information in the hash table entry to be used by the _bfd_final_link function. In such a case the output bfd xvec must be checked to make sure that the hash table was created by an object file of the same format.

The _bfd_final_link routine must be prepared to handle a hash entry without any extra information added by the _bfd_link_add_symbols function. A hash entry without extra information will also occur when the linker script directs the linker to create a symbol. Note that, regardless of how a hash table entry is added, all the fields will be initialized to some sort of null value by the hash table entry initialization function.

See ecoff_link_add_externals for an example of how to check the output bfd before saving information (in this case, the ECOFF external symbol debugging information) in a hash table entry.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.2.2 Adding symbols from an object file

When the _bfd_link_add_symbols routine is passed an object file, it must add all externally visible symbols in that object file to the hash table. The actual work of adding the symbol to the hash table is normally handled by the function _bfd_generic_link_add_one_symbol. The _bfd_link_add_symbols routine is responsible for reading all the symbols from the object file and passing the correct information to _bfd_generic_link_add_one_symbol.

The _bfd_link_add_symbols routine should not use bfd_canonicalize_symtab to read the symbols. The point of providing this routine is to avoid the overhead of converting the symbols into generic asymbol structures.

_bfd_generic_link_add_one_symbol handles the details of combining common symbols, warning about multiple definitions, and so forth. It takes arguments which describe the symbol to add, notably symbol flags, a section, and an offset. The symbol flags include such things as BSF_WEAK or BSF_INDIRECT. The section is a section in the object file, or something like bfd_und_section_ptr for an undefined symbol or bfd_com_section_ptr for a common symbol.

If the _bfd_final_link routine is also going to need to read the symbol information, the _bfd_link_add_symbols routine should save it somewhere attached to the object file BFD. However, the information should only be saved if the keep_memory field of the info argument is TRUE, so that the -no-keep-memory linker switch is effective.

The a.out function which adds symbols from an object file is aout_link_add_object_symbols, and most of the interesting work is in aout_link_add_symbols. The latter saves pointers to the hash tables entries created by _bfd_generic_link_add_one_symbol indexed by symbol number, so that the _bfd_final_link routine does not have to call the hash table lookup routine to locate the entry.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.2.3 Adding symbols from an archive

When the _bfd_link_add_symbols routine is passed an archive, it must look through the symbols defined by the archive and decide which elements of the archive should be included in the link. For each such element it must call the add_archive_element linker callback, and it must add the symbols from the object file to the linker hash table. (The callback may in fact indicate that a replacement BFD should be used, in which case the symbols from that BFD should be added to the linker hash table instead.)

In most cases the work of looking through the symbols in the archive should be done by the _bfd_generic_link_add_archive_symbols function. This function builds a hash table from the archive symbol table and looks through the list of undefined symbols to see which elements should be included. _bfd_generic_link_add_archive_symbols is passed a function to call to make the final decision about adding an archive element to the link and to do the actual work of adding the symbols to the linker hash table.

The function passed to _bfd_generic_link_add_archive_symbols must read the symbols of the archive element and decide whether the archive element should be included in the link. If the element is to be included, the add_archive_element linker callback routine must be called with the element as an argument, and the element's symbols must be added to the linker hash table just as though the element had itself been passed to the _bfd_link_add_symbols function. The add_archive_element callback has the option to indicate that it would like to replace the element archive with a substitute BFD, in which case it is the symbols of that substitute BFD that must be added to the linker hash table instead.

When the a.out _bfd_link_add_symbols function receives an archive, it calls _bfd_generic_link_add_archive_symbols passing aout_link_check_archive_element as the function argument. aout_link_check_archive_element calls aout_link_check_ar_symbols. If the latter decides to add the element (an element is only added if it provides a real, non-common, definition for a previously undefined or common symbol) it calls the add_archive_element callback and then aout_link_check_archive_element calls aout_link_add_symbols to actually add the symbols to the linker hash table - possibly those of a substitute BFD, if the add_archive_element callback avails itself of that option.

The ECOFF back end is unusual in that it does not normally call _bfd_generic_link_add_archive_symbols, because ECOFF archives already contain a hash table of symbols. The ECOFF back end searches the archive itself to avoid the overhead of creating a new hash table.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.3 Performing the final link

When all the input files have been processed, the linker calls the _bfd_final_link entry point of the output BFD. This routine is responsible for producing the final output file, which has several aspects. It must relocate the contents of the input sections and copy the data into the output sections. It must build an output symbol table including any local symbols from the input files and the global symbols from the hash table. When producing relocatable output, it must modify the input relocs and write them into the output file. There may also be object format dependent work to be done.

The linker will also call the write_object_contents entry point when the BFD is closed. The two entry points must work together in order to produce the correct output file.

The details of how this works are inevitably dependent upon the specific object file format. The a.out _bfd_final_link routine is NAME(aout,final_link).

2.17.3.1 Information provided by the linker  
2.17.3.2 Relocating the section contents  
2.17.3.3 Writing the symbol table  


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.3.1 Information provided by the linker

Before the linker calls the _bfd_final_link entry point, it sets up some data structures for the function to use.

The input_bfds field of the bfd_link_info structure will point to a list of all the input files included in the link. These files are linked through the link_next field of the bfd structure.

Each section in the output file will have a list of link_order structures attached to the map_head.link_order field (the link_order structure is defined in bfdlink.h). These structures describe how to create the contents of the output section in terms of the contents of various input sections, fill constants, and, eventually, other types of information. They also describe relocs that must be created by the BFD backend, but do not correspond to any input file; this is used to support -Ur, which builds constructors while generating a relocatable object file.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.3.2 Relocating the section contents

The _bfd_final_link function should look through the link_order structures attached to each section of the output file. Each link_order structure should either be handled specially, or it should be passed to the function _bfd_default_link_order which will do the right thing (_bfd_default_link_order is defined in linker.c).

For efficiency, a link_order of type bfd_indirect_link_order whose associated section belongs to a BFD of the same format as the output BFD must be handled specially. This type of link_order describes part of an output section in terms of a section belonging to one of the input files. The _bfd_final_link function should read the contents of the section and any associated relocs, apply the relocs to the section contents, and write out the modified section contents. If performing a relocatable link, the relocs themselves must also be modified and written out.

The functions _bfd_relocate_contents and _bfd_final_link_relocate provide some general support for performing the actual relocations, notably overflow checking. Their arguments include information about the symbol the relocation is against and a reloc_howto_type argument which describes the relocation to perform. These functions are defined in reloc.c.

The a.out function which handles reading, relocating, and writing section contents is aout_link_input_section. The actual relocation is done in aout_link_input_section_std and aout_link_input_section_ext.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.3.3 Writing the symbol table

The _bfd_final_link function must gather all the symbols in the input files and write them out. It must also write out all the symbols in the global hash table. This must be controlled by the strip and discard fields of the bfd_link_info structure.

The local symbols of the input files will not have been entered into the linker hash table. The _bfd_final_link routine must consider each input file and include the symbols in the output file. It may be convenient to do this when looking through the link_order structures, or it may be done by stepping through the input_bfds list.

The _bfd_final_link routine must also traverse the global hash table to gather all the externally visible symbols. It is possible that most of the externally visible symbols may be written out when considering the symbols of each input file, but it is still necessary to traverse the hash table since the linker script may have defined some symbols that are not in any of the input files.

The strip field of the bfd_link_info structure controls which symbols are written out. The possible values are listed in bfdlink.h. If the value is strip_some, then the keep_hash field of the bfd_link_info structure is a hash table of symbols to keep; each symbol should be looked up in this hash table, and only symbols which are present should be included in the output file.

If the strip field of the bfd_link_info structure permits local symbols to be written out, the discard field is used to further controls which local symbols are included in the output file. If the value is discard_l, then all local symbols which begin with a certain prefix are discarded; this is controlled by the bfd_is_local_label_name entry point.

The a.out backend handles symbols by calling aout_link_write_symbols on each input BFD and then traversing the global hash table with the function aout_link_write_other_symbol. It builds a string table while writing out the symbols, which is written to the output file at the end of NAME(aout,final_link).


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.3.4 bfd_link_split_section

Synopsis
 
bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
Description
Return nonzero if sec should be split during a reloceatable or final link.
 
#define bfd_link_split_section(abfd, sec) \
       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.3.5 bfd_section_already_linked

Synopsis
 
bfd_boolean bfd_section_already_linked (bfd *abfd,
    asection *sec,
    struct bfd_link_info *info);
Description
Check if data has been already linked during a reloceatable or final link. Return TRUE if it has.
 
#define bfd_section_already_linked(abfd, sec, info) \
       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.3.6 bfd_generic_define_common_symbol

Synopsis
 
bfd_boolean bfd_generic_define_common_symbol
   (bfd *output_bfd, struct bfd_link_info *info,
    struct bfd_link_hash_entry *h);
Description
Convert common symbol h into a defined symbol. Return TRUE on success and FALSE on failure.
 
#define bfd_define_common_symbol(output_bfd, info, h) \
       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.3.7 bfd_find_version_for_sym

Synopsis
 
struct bfd_elf_version_tree * bfd_find_version_for_sym
   (struct bfd_elf_version_tree *verdefs,
    const char *sym_name, bfd_boolean *hide);
Description
Search an elf version script tree for symbol versioning info and export / don't-export status for a given symbol. Return non-NULL on success and NULL on failure; also sets the output `hide' boolean parameter.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.17.3.8 bfd_hide_sym_by_version

Synopsis
 
bfd_boolean bfd_hide_sym_by_version
   (struct bfd_elf_version_tree *verdefs, const char *sym_name);
Description
Search an elf version script tree for symbol versioning info for a given symbol. Return TRUE if the symbol is hidden.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.18 Hash Tables

BFD provides a simple set of hash table functions. Routines are provided to initialize a hash table, to free a hash table, to look up a string in a hash table and optionally create an entry for it, and to traverse a hash table. There is currently no routine to delete an string from a hash table.

The basic hash table does not permit any data to be stored with a string. However, a hash table is designed to present a base class from which other types of hash tables may be derived. These derived types may store additional information with the string. Hash tables were implemented in this way, rather than simply providing a data pointer in a hash table entry, because they were designed for use by the linker back ends. The linker may create thousands of hash table entries, and the overhead of allocating private data and storing and following pointers becomes noticeable.

The basic hash table code is in hash.c.

2.18.1 Creating and freeing a hash table  
2.18.2 Looking up or entering a string  
2.18.3 Traversing a hash table  
2.18.4 Deriving a new hash table type  


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.18.1 Creating and freeing a hash table

To create a hash table, create an instance of a struct bfd_hash_table (defined in bfd.h) and call bfd_hash_table_init (if you know approximately how many entries you will need, the function bfd_hash_table_init_n, which takes a size argument, may be used). bfd_hash_table_init returns FALSE if some sort of error occurs.

The function bfd_hash_table_init take as an argument a function to use to create new entries. For a basic hash table, use the function bfd_hash_newfunc. See section 2.18.4 Deriving a new hash table type, for why you would want to use a different value for this argument.

bfd_hash_table_init will create an objalloc which will be used to allocate new entries. You may allocate memory on this objalloc using bfd_hash_allocate.

Use bfd_hash_table_free to free up all the memory that has been allocated for a hash table. This will not free up the struct bfd_hash_table itself, which you must provide.

Use bfd_hash_set_default_size to set the default size of hash table to use.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.18.2 Looking up or entering a string

The function bfd_hash_lookup is used both to look up a string in the hash table and to create a new entry.

If the create argument is FALSE, bfd_hash_lookup will look up a string. If the string is found, it will returns a pointer to a struct bfd_hash_entry. If the string is not found in the table bfd_hash_lookup will return NULL. You should not modify any of the fields in the returns struct bfd_hash_entry.

If the create argument is TRUE, the string will be entered into the hash table if it is not already there. Either way a pointer to a struct bfd_hash_entry will be returned, either to the existing structure or to a newly created one. In this case, a NULL return means that an error occurred.

If the create argument is TRUE, and a new entry is created, the copy argument is used to decide whether to copy the string onto the hash table objalloc or not. If copy is passed as FALSE, you must be careful not to deallocate or modify the string as long as the hash table exists.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.18.3 Traversing a hash table

The function bfd_hash_traverse may be used to traverse a hash table, calling a function on each element. The traversal is done in a random order.

bfd_hash_traverse takes as arguments a function and a generic void * pointer. The function is called with a hash table entry (a struct bfd_hash_entry *) and the generic pointer passed to bfd_hash_traverse. The function must return a boolean value, which indicates whether to continue traversing the hash table. If the function returns FALSE, bfd_hash_traverse will stop the traversal and return immediately.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.18.4 Deriving a new hash table type

Many uses of hash tables want to store additional information which each entry in the hash table. Some also find it convenient to store additional information with the hash table itself. This may be done using a derived hash table.

Since C is not an object oriented language, creating a derived hash table requires sticking together some boilerplate routines with a few differences specific to the type of hash table you want to create.

An example of a derived hash table is the linker hash table. The structures for this are defined in bfdlink.h. The functions are in linker.c.

You may also derive a hash table from an already derived hash table. For example, the a.out linker backend code uses a hash table derived from the linker hash table.

2.18.4.1 Define the derived structures  
2.18.4.2 Write the derived creation routine  
2.18.4.3 Write other derived routines  


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.18.4.1 Define the derived structures

You must define a structure for an entry in the hash table, and a structure for the hash table itself.

The first field in the structure for an entry in the hash table must be of the type used for an entry in the hash table you are deriving from. If you are deriving from a basic hash table this is struct bfd_hash_entry, which is defined in bfd.h. The first field in the structure for the hash table itself must be of the type of the hash table you are deriving from itself. If you are deriving from a basic hash table, this is struct bfd_hash_table.

For example, the linker hash table defines struct bfd_link_hash_entry (in bfdlink.h). The first field, root, is of type struct bfd_hash_entry. Similarly, the first field in struct bfd_link_hash_table, table, is of type struct bfd_hash_table.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.18.4.2 Write the derived creation routine

You must write a routine which will create and initialize an entry in the hash table. This routine is passed as the function argument to bfd_hash_table_init.

In order to permit other hash tables to be derived from the hash table you are creating, this routine must be written in a standard way.

The first argument to the creation routine is a pointer to a hash table entry. This may be NULL, in which case the routine should allocate the right amount of space. Otherwise the space has already been allocated by a hash table type derived from this one.

After allocating space, the creation routine must call the creation routine of the hash table type it is derived from, passing in a pointer to the space it just allocated. This will initialize any fields used by the base hash table.

Finally the creation routine must initialize any local fields for the new hash table type.

Here is a boilerplate example of a creation routine. function_name is the name of the routine. entry_type is the type of an entry in the hash table you are creating. base_newfunc is the name of the creation routine of the hash table type your hash table is derived from.

 
struct bfd_hash_entry *
function_name (struct bfd_hash_entry *entry,
                     struct bfd_hash_table *table,
                     const char *string)
{
  struct entry_type *ret = (entry_type *) entry;

 /* Allocate the structure if it has not already been allocated by a
    derived class.  */
  if (ret == NULL)
    {
      ret = bfd_hash_allocate (table, sizeof (* ret));
      if (ret == NULL)
        return NULL;
    }

 /* Call the allocation method of the base class.  */
  ret = ((entry_type *)
        base_newfunc ((struct bfd_hash_entry *) ret, table, string));

 /* Initialize the local fields here.  */

  return (struct bfd_hash_entry *) ret;
}
Description
The creation routine for the linker hash table, which is in linker.c, looks just like this example. function_name is _bfd_link_hash_newfunc. entry_type is struct bfd_link_hash_entry. base_newfunc is bfd_hash_newfunc, the creation routine for a basic hash table.

_bfd_link_hash_newfunc also initializes the local fields in a linker hash table entry: type, written and next.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2.18.4.3 Write other derived routines

You will want to write other routines for your new hash table, as well.

You will want an initialization routine which calls the initialization routine of the hash table you are deriving from and initializes any other local fields. For the linker hash table, this is _bfd_link_hash_table_init in linker.c.

You will want a lookup routine which calls the lookup routine of the hash table you are deriving from and casts the result. The linker hash table uses bfd_link_hash_lookup in linker.c (this actually takes an additional argument which it uses to decide how to return the looked up value).

You may want a traversal routine. This should just call the traversal routine of the hash table you are deriving from with appropriate casts. The linker hash table uses bfd_link_hash_traverse in linker.c.

These routines may simply be defined as macros. For example, the a.out backend linker hash table, which is derived from the linker hash table, uses macros for the lookup and traversal routines. These are aout_link_hash_lookup and aout_link_hash_traverse in aoutx.h.


[ << ] [ >> ]           [Top] [Contents] [Index] [ ? ]

This document was generated by GNAT Mailserver on April, 10 2014 using texi2html