Groovy Language Documentation

Version 5.0.0-beta-1

Introduction

Groovy...

is an agile and dynamic language for the Java Virtual Machine

builds upon the strengths of Java but has additional power features inspired by languages like
Python, Ruby and Smalltalk

makes modern programming features available to Java developers with almost-zero learning
curve

provides the ability to statically type check and statically compile your code for robustness and
performance

supports Domain-Specific Languages and other compact syntax so your code becomes easy to
read and maintain

makes writing shell and build scripts easy with its powerful processing primitives, OO abilities
and an Ant DSL

increases developer productivity by reducing scaffolding code when developing web, GUI,
database or console applications

simplifies testing by supporting unit testing and mocking out-of-the-box
seamlessly integrates with all existing Java classes and libraries

compiles straight to Java bytecode so you can use it anywhere you can use Java

Groovy Language Specification

Syntax

This chapter covers the syntax of the Groovy programming language. The grammar of the language
derives from the Java grammar, but enhances it with specific constructs for Groovy, and allows
certain simplifications.

Comments

Single-line comment

Single-line comments start with // and can be found at any position in the line. The characters
following //, until the end of the line, are considered part of the comment.

// a standalone single line comment
println "hello" // a comment till the end of the line

Multiline comment

A multiline comment starts with /* and can be found at any position in the line. The characters
following /* will be considered part of the comment, including new line characters, up to the first
*/ closing the comment. Multiline comments can thus be put at the end of a statement, or even
inside a statement.

/* a standalone multiline comment
spanning two lines */
println "hello" /* a multiline comment starting
at the end of a statement */
println 1 /* one */ + 2 /* two */

Groovydoc comment

Similarly to multiline comments, Groovydoc comments are multiline, but start with /** and end
with */. Lines following the first Groovydoc comment line can optionally start with a star *. Those
comments are associated with:

* type definitions (classes, interfaces, enums, annotations),

* fields and properties definitions

* methods definitions

Although the compiler will not complain about Groovydoc comments not being associated with the
above language elements, you should prepend those constructs with the comment right before it.

/**

* A (Class description

*/

class Person {
/** the name of the person */
String name

/**

* Creates a greeting method for a certain person.
*

* @param otherPerson the person to greet
* @return a greeting message
*/
String greet(String otherPerson) {
"Hello ${otherPerson}"
}

Groovydoc follows the same conventions as Java’s own Javadoc. So you’ll be able to use the same
tags as with Javadoc.

In addition, Groovy supports Runtime Groovydoc since 3.0.0, i.e. Groovydoc can be retained at
runtime.

Runtime Groovydoc is disabled by default. It can be enabled by adding JVM option

NOTE -Dgroovy.attach.runtime.groovydoc=true

The Runtime Groovydoc starts with /**@ and ends with */, for example:

/**@
* Some class groovydoc for Foo
*/
class Foo {
/**@
* Some method groovydoc for bar
*/
void bar() {
}
}

assert Foo.class.groovydoc.content.contains('Some class groovydoc for Foo') @
assert Foo.class.getMethod('bar', new Class[@]).groovydoc.content.contains('Some
method groovydoc for bar') @

@ Get the runtime groovydoc for class Foo

@ Get the runtime groovydoc for method bar

Shebang line

Beside the single-line comment, there is a special line comment, often called the shebang line

understood by UNIX systems which allows scripts to be run directly from the command-line,
provided you have installed the Groovy distribution and the groovy command is available on the
PATH.

#!/usr/bin/env groovy
println "Hello from the shebang line"

The # character must be the first character of the file. Any indentation would yield a

NOTE I
compilation error.

Keywords

Groovy has the following reserved keywords:

Table 1. Reserved Keywords

abstract assert break case
catch class const continue
def default do else
enum extends final finally
for goto if implements
import instanceof interface native
new null non-sealed package
public protected private return
static strictfp super switch
synchronized this threadsafe throw
throws transient try while

Of these, const, goto, strictfp, and threadsafe are not currently in use.

The reserved keywords can’t in general be used for variable, field and method names.

A trick allows methods to be defined having the same name as a keyword by surrounding the
name in quotes as shown in the following example:

// reserved keywords can be used for method names if quoted

def "abstract"() { true }
// when calling such methods, the name must be qualified using "this."

this.abstract()

Using such names might be confusing and is often best to avoid. The trick is primarily
intended to enable certain Java integration scenarios and certain DSL scenarios where having

core-domain-specific-languages.html

"verbs" and "nouns" with the same name as keywords may be desirable.

In addition, Groovy has the following contextual keywords:

Table 2. Contextual Keywords
as in permits record

sealed trait var yields

These words are only keywords in certain contexts and can be more freely used in some places, in
particular for variables, fields and method names.

This extra lenience allows using method or variable names that were not keywords in earlier
versions of Groovy or are not keywords in Java. Examples are shown here:

// contextual keywords can be used for field and variable names
def as = true
assert as

// contextual keywords can be used for method names

def in() { true }

// when calling such methods, the name only needs to be qualified using "this."
in scenarios which would be ambiguous

this.in()

Groovy programmers familiar with these contextual keywords may still wish to avoid using
those names unless there is a good reason to use such a name.

The restrictions on reserved keywords also apply for the primitive types, the boolean literals and
the null literal (all of which are discussed later):

Table 3. Other reserved words

null true false boolean
char byte short int
long float double

While not recommended, the same trick as for reserved keywords can be used:

def "null"() { true } // not recommended; potentially confusing
assert this.null() // must be qualified

Using such words as method names is potentially confusing and is often best to avoid,
however, it might be useful for certain kinds of DSLs.

core-domain-specific-languages.html

Identifiers

Normal identifiers
Identifiers start with a letter, a dollar or an underscore. They cannot start with a number.
A letter can be in the following ranges:

* 'a' to 'z' (lowercase ascii letter)
* 'A'to "Z' (uppercase ascii letter)
* "\u00CO' to "\u00DE'
* '\uOODS8' to "\uOOF6'
* "\uOOF8' to "\uOOFF"
* "\u0100' to "uFFFE'

Then following characters can contain letters and numbers.

Here are a few examples of valid identifiers (here, variable names):

def name

def item3

def with_underscore
def $dollarStart

But the following ones are invalid identifiers:

def 3tier
def a+b
def ai#ib

All keywords are also valid identifiers when following a dot:

foo.as
foo.assert
foo.break
foo.case
foo.catch

Quoted identifiers

Quoted identifiers appear after the dot of a dotted expression. For instance, the name part of the
person.name expression can be quoted with person."name" or person.'name'. This is particularly
interesting when certain identifiers contain illegal characters that are forbidden by the Java
Language Specification, but which are allowed by Groovy when quoted. For example, characters
like a dash, a space, an exclamation mark, etc.

def map = [:]

map."an identifier with a space and double quotes" = "ALLOWED"
map.'with-dash-signs-and-single-quotes' = "ALLOWED"

assert map."an identifier with a space and double quotes" == "ALLOWED"
assert map. 'with-dash-signs-and-single-quotes' == "ALLOWED"

As we shall see in the following section on strings, Groovy provides different string literals. All kind
of strings are actually allowed after the dot:

map. 'single quote'
map. "double quote"

map.' ' 'triple single quote
map."""triple double quote
map./slashy string/

map.$/dollar slashy string/$

There’s a difference between plain character strings and Groovy’s GStrings (interpolated strings), as
in that the latter case, the interpolated values are inserted in the final string for evaluating the
whole identifier:

def firstname = "Homer"

map."Simpson-${firstname}" = "Homer Simpson"
assert map.'Simpson-Homer' == "Homer Simpson"
Strings

Text literals are represented in the form of chain of characters called strings. Groovy lets you
instantiate java.lang.String objects, as well as GStrings (groovy.lang.GString) which are also called
interpolated strings in other programming languages.

Single-quoted string

Single-quoted strings are a series of characters surrounded by single quotes:

'a single-quoted string'

NOTE Single-quoted strings are plain java.lang.String and don’t support interpolation.

String concatenation

All the Groovy strings can be concatenated with the + operator:

assert 'ab' == 'a' + 'b'

Triple-single-quoted string

Triple-single-quoted strings are a series of characters surrounded by triplets of single quotes:

"""a triple-single-quoted string'"’

NOTE Triple-single-quoted strings are plain java.lang.String and don’t support
interpolation.

Triple-single-quoted strings may span multiple lines. The content of the string can cross line

boundaries without the need to split the string in several pieces and without concatenation or

newline escape characters:

def aMultilineString = '''line one
line two
line three'''

If your code is indented, for example in the body of the method of a class, your string will contain
the whitespace of the indentation. The Groovy Development Kit contains methods for stripping out
the indentation with the String#stripIndent() method, and with the String#stripMargin() method
that takes a delimiter character to identify the text to remove from the beginning of a string.

When creating a string as follows:

def startingAndEndingWithANewline = "'’
line one

line two

line three

You will notice that the resulting string contains a newline character as first character. It is possible
to strip that character by escaping the newline with a backslash:

def strippedFirstNewline = """\
line one

line two

line three

assert !strippedFirstNewline.startsWith('\n")

Escaping special characters

You can escape single quotes with the backslash character to avoid terminating the string literal:

'an escaped single quote: \' needs a backslash'

And you can escape the escape character itself with a double backslash:

'an escaped escape character: \\ needs a double backslash'

Some special characters also use the backslash as escape character:

Escape sequence Character

\b backspace

\f formfeed

\n newline

\r carriage return

\s single space

\t tabulation

\\ backslash

\' single quote within a single-quoted string (and optional for triple-

single-quoted and double-quoted strings)

\" double quote within a double-quoted string (and optional for
triple-double-quoted and single-quoted strings)

We’ll see some more escaping details when it comes to other types of strings discussed later.

Unicode escape sequence

For characters that are not present on your keyboard, you can use unicode escape sequences: a
backslash, followed by 'u’, then 4 hexadecimal digits.

For example, the Euro currency symbol can be represented with:

'The Euro currency symbol: \u20AC'

Double-quoted string

Double-quoted strings are a series of characters surrounded by double quotes:

"a double-quoted string"

Double-quoted strings are plain java.lang.String if there’s no interpolated

NOTE . S i L.
expression, but are groovy.lang.GString instances if interpolation is present.

NOTE To escape a double quote, you can use the backslash character: "A double quote: \"".

String interpolation

Any Groovy expression can be interpolated in all string literals, apart from single and triple-single-
quoted strings. Interpolation is the act of replacing a placeholder in the string with its value upon
evaluation of the string. The placeholder expressions are surrounded by ${}. The curly braces may
be omitted for unambiguous dotted expressions, i.e. we can use just a $ prefix in those cases. If the
GString is ever passed to a method taking a String, the expression value inside the placeholder is
evaluated to its string representation (by calling toString() on that expression) and the resulting
String is passed to the method.

Here, we have a string with a placeholder referencing a local variable:

def name = 'Guillaume' // a plain string
def greeting = "Hello ${name}"

assert greeting.toString() == 'Hello Guillaume'

Any Groovy expression is valid, as we can see in this example with an arithmetic expression:

def sum = "The sum of 2 and 3 equals ${2 + 3}"
assert sum.toString() == 'The sum of 2 and 3 equals 5'

Not only are expressions allowed in between the ${} placeholder, but so are
statements. However, a statement’s value is just null. So if several statements are
inserted in that placeholder, the last one should somehow return a meaningful
value to be inserted. For instance, "The sum of 1 and 2 is equal to ${defa =1; def b =
2; a + b}" is supported and works as expected but a good practice is usually to stick
to simple expressions inside GString placeholders.

NOTE

In addition to ${} placeholders, we can also use a lone §$ sign prefixing a dotted expression:

def person = [name: 'Guillaume', age: 36]
assert "$person.name is $person.age years old" == 'Guillaume is 36 years old'

But only dotted expressions of the form a.b, a.b.c, etc, are valid. Expressions containing
parentheses like method calls, curly braces for closures, dots which aren’t part of a property
expression or arithmetic operators would be invalid. Given the following variable definition of a
number:

10

def number = 3.14

The following statement will throw a groovy.lang.MissingPropertyException because Groovy
believes you’re trying to access the toString property of that number, which doesn’t exist:

shouldFail(MissingPropertyException) {
println "$number.toString()"

}

You can think of "$number.toString()" as being interpreted by the parser as

NOTE
"${number.toString}()".

Similarly, if the expression is ambiguous, you need to keep the curly braces:

String thing = "treasure’
assert 'The x-coordinate of the treasure is represented by treasure.x' ==
"The x-coordinate of the $thing is represented by $thing.x" // <= Not allowed:
ambiquous!!
assert 'The x-coordinate of the treasure is represented by treasure.x' ==
"The x-coordinate of the $thing is represented by ${thing}.x" // <= Curly
braces required

If you need to escape the $ or ${} placeholders in a GString so they appear as is without
interpolation, you just need to use a \ backslash character to escape the dollar sign:

assert '$5' == "\§$5"
assert '${name}' == "\${name}"

Special case of interpolating closure expressions

So far, we’ve seen we could interpolate arbitrary expressions inside the ${} placeholder, but there
is a special case and notation for closure expressions. When the placeholder contains an arrow,
${~}, the expression is actually a closure expression — you can think of it as a closure with a dollar
prepended in front of it:

def sParameterLessClosure = "1 + 2 == ${-> 3}" @
assert sParameterLessClosure == '1T + 2 == 3'

def sOneParamClosure = "1 + 2 == ${ w -> w << 3}" @
assert sOneParamClosure == '1 + 2 == 3'

@ The closure is a parameterless closure which doesn’t take arguments.

@ Here, the closure takes a single java.io.StringWriter argument, to which you can append
content with the << leftShift operator. In either case, both placeholders are embedded closures.

11

In appearance, it looks like a more verbose way of defining expressions to be interpolated, but
closures have an interesting advantage over mere expressions: lazy evaluation.

Let’s consider the following sample:
def number = 1 @®

def eagerGString = "value == ${number}"
def lazyGString = "value == ${ -> number }"

assert eagerGString == "value == 1" @
assert lazyGString == "value == 1" ®
number = 2 @

assert eagerGString == "value == 1" ®
assert lazyGString == "value == 2" ®

@ We define a number variable containing 1 that we then interpolate within two GStrings, as an
expression in eagerGString and as a closure in 1azyGString.

@ We expect the resulting string to contain the same string value of 1 for eagerGString.
® Similarly for lazyGString
@ Then we change the value of the variable to a new number

® With a plain interpolated expression, the value was actually bound at the time of creation of the
GString.

® But with a closure expression, the closure is called upon each coercion of the GString into String,
resulting in an updated string containing the new number value.

An embedded closure expression taking more than one parameter will generate an

NOTE . . .
exception at runtime. Only closures with zero or one parameter are allowed.

Interoperability with Java

When a method (whether implemented in Java or Groovy) expects a java.lang.String, but we pass
a groovy.lang.GString instance, the toString() method of the GString is automatically and
transparently called.

String takeString(String message) { @
assert message instanceof String ®
return message

}

def message = "The message is ${'hello'}" @

assert message instanceof GString @

def result = takeString(message) ©)
assert result instanceof String

assert result == 'The message is hello'

12

@ We create a GString variable

@ We double-check it’s an instance of the GString

3 We then pass that GString to a method taking a String as parameter

@ The signature of the takeString() method explicitly says its sole parameter is a String

® We also verify that the parameter is indeed a String and not a GString.

GString and String hashCodes

Although interpolated strings can be used in lieu of plain Java strings, they differ with strings in a
particular way: their hashCodes are different. Plain Java strings are immutable, whereas the
resulting String representation of a GString can vary, depending on its interpolated values. Even for
the same resulting string, GStrings and Strings don’t have the same hashCode.

assert "one: ${1}".hashCode() != "one: 1".hashCode()

GString and Strings having different hashCode values, using GString as Map keys should be
avoided, especially if we try to retrieve an associated value with a String instead of a GString.

def key = "a"
def m = ["${key}": "letter ${key}"] @

assert m["a"] == null

@ The map is created with an initial pair whose key is a GString

@ When we try to fetch the value with a String key, we will not find it, as Strings and GString have
different hashCode values

Triple-double-quoted string

Triple-double-quoted strings behave like double-quoted strings, with the addition that they are
multiline, like the triple-single-quoted strings.

def name = 'Groovy'
def template = """
Dear Mr ${name},
You're the winner of the lottery!

Yours sincerly,

Dave

assert template.toString().contains('Groovy')

13

Neither double quotes nor single quotes need be escaped in triple-double-quoted

NOTE .
strings.

Slashy string

Beyond the usual quoted strings, Groovy offers slashy strings, which use / as the opening and
closing delimiter. Slashy strings are particularly useful for defining regular expressions and
patterns, as there is no need to escape backslashes.

Example of a slashy string:

def fooPattern = /.*foo.*/
assert fooPattern == '.*foo0.*'

Only forward slashes need to be escaped with a backslash:

def escapeSlash = /The character \/ is a forward slash/
assert escapeSlash == 'The character / is a forward slash'

Slashy strings are multiline:

def multilineSlashy = /one
two
three/

assert multilineSlashy.contains('\n")

Slashy strings can be thought of as just another way to define a GString but with different escaping
rules. They hence support interpolation:

def color = 'blue'
def interpolatedSlashy = /a ${color} car/

assert interpolatedSlashy == 'a blue car’

Special cases

An empty slashy string cannot be represented with a double forward slash, as it’s understood by
the Groovy parser as a line comment. That’s why the following assert would actually not compile as
it would look like a non-terminated statement:

assert = //

As slashy strings were mostly designed to make regexp easier so a few things that are errors in

14

GStrings like $() or $5 will work with slashy strings.

Remember that escaping backslashes is not required. An alternative way of thinking of this is that
in fact escaping is not supported. The slashy string /\t/ won’t contain a tab but instead a backslash
followed by the character 't". Escaping is only allowed for the slash character, i.e. /\/folder/ will be
a slashy string containing '/folder'. A consequence of slash escaping is that a slashy string can’t
end with a backslash. Otherwise that will escape the slashy string terminator. You can instead use a
special trick, /ends with slash ${'\\'}/. But best just avoid using a slashy string in such a case.

Dollar slashy string

Dollar slashy strings are multiline GStrings delimited with an opening $/ and a closing /$. The
escaping character is the dollar sign, and it can escape another dollar, or a forward slash. Escaping
for the dollar and forward slash characters is only needed where conflicts arise with the special use
of those characters. The characters $foo would normally indicate a GString placeholder, so those
four characters can be entered into a dollar slashy string by escaping the dollar, i.e. §§foo. Similarly,
you will need to escape a dollar slashy closing delimiter if you want it to appear in your string.

Here are a few examples:

"Guillaume"
"April, 1st"

def name
def date

def dollarSlashy = $/
Hello $name,
today we're ${date}.

$ dollar sign

$$ escaped dollar sign

\ backslash

/ forward slash

$/ escaped forward slash

$$$/ escaped opening dollar slashy
$/$$ escaped closing dollar slashy

/$

assert [
"Guillaume',
"April, 1Tst',

'$ dollar sign',

'$ escaped dollar sign',

"\\ backslash',

'/ forward slash',

'/ escaped forward slash',

'$/ escaped opening dollar slashy',

'/$ escaped closing dollar slashy'
].every { dollarSlashy.contains(it) }

It was created to overcome some of the limitations of the slashy string escaping rules. Use it when

15

its escaping rules suit your string contents (typically if it has some slashes you don’t want to

escape).

String summary table

String name String syntax
Single-quoted

Triple-single-
quoted

Double-quoted

Illlll...""ll

Triple-double-

quoted

Slashy [/
Dollar slashy $/-/8$
Characters

Interpolated
[check empty]
[check empty]

[check]
[check]

[check]
[check]

Multiline
[check empty]
[check]

[check empty]
[checK]

[check]
[check]

Escape character
\

\

Unlike Java, Groovy doesn’t have an explicit character literal. However, you can be explicit about
making a Groovy string an actual character, by three different means:

char ¢1 = 'A' @

assert c1 instanceof Character

def ¢2 = 'B' as char @

assert c2 instanceof Character

def ¢3 = (char)'C' ®

assert c3 instanceof Character

@ by being explicit when declaring a variable holding the character by specifying the char type

@ by using type coercion with the as operator

® by using a cast to char operation

The first option 1 is interesting when the character is held in a variable, while the
NOTE other two (2 and 3) are more interesting when a char value must be passed as

argument of a method call.

Numbers

Groovy supports different kinds of integral literals and decimal literals, backed by the usual Number

types of Java.

Integral literals

The integral literal types are the same as in Java:

16

* byte
* char
* short
e int

* long

* java.math.BigInteger

You can create integral numbers of those types with the following declarations:

// primitive types

byte b =1
char ¢ =2
short s = 3
int i=4
long 1 =5

// infinite precision
BigInteger bi = 6

If you use optional typing by using the def keyword, the type of the integral number will vary: it’ll
adapt to the capacity of the type that can hold that number.
For positive numbers:

def a = 1
assert a instanceof Integer

// Integer.MAX_VALUE
def b = 2147483647
assert b instanceof Integer

// Integer.MAX_VALUE + 1
def ¢ = 2147483648
assert ¢ instanceof Long

// Long.MAX_VALUE

def d = 9223372036854775807
assert d instanceof Long

// Long.MAX_VALUE + 1

def e = 9223372036854775808
assert e instanceof BigInteger

As well as for negative numbers:

def na = -1

17

assert na instanceof Integer

// Integer.MIN_VALUE
def nb = -2147483648
assert nb instanceof Integer

// Integer .MIN_VALUE - 1
def nc = -2147483649
assert nc instanceof Long

// Long.MIN_VALUE
def nd = -9223372036854775808
assert nd instanceof Long

// Long.MIN_VALUE - 1
def ne = -9223372036854775809
assert ne instanceof BigInteger

Alternative non-base 10 representations

Numbers can also be represented in binary, octal, hexadecimal and decimal bases.

Binary literal

Binary numbers start with a 0b prefix:

int xInt = 8b10101111
assert xInt == 175

short xShort = 0b11001001
assert xShort == 201 as short

byte xByte = @b11
assert xByte == 3 as byte

long xLong = 0b101101101101
assert xLong == 29251

BigInteger xBigInteger = 0b111100100001
assert xBigInteger == 3873g

int xNegativeInt = -0b10101111
assert xNegativelnt == -175

Octal literal

Octal numbers are specified in the typical format of @ followed by octal digits.

int xInt = 077

18

assert xInt == 63

short xShort = 011
assert xShort == 9 as short

byte xByte = 032
assert xByte == 26 as byte

long xLong = 0246
assert xLong == 1661

BigInteger xBigInteger = 01111
assert xBigInteger == 585¢g

int xNegativelnt = -077
assert xNegativelnt == -63

Hexadecimal literal
Hexadecimal numbers are specified in the typical format of 0x followed by hex digits.

int xInt = Ox77
assert xInt == 119

short xShort = O@xaa
assert xShort == 170 as short

byte xByte = 0x3a
assert xByte == 58 as byte

long xLong = @Oxffff
assert xLong == 655351

BigInteger xBigInteger = @xaaaa
assert xBigInteger == 436909

Double xDouble = new Double('0x1.0p0")
assert xDouble == 1.0d

int xNegativelnt = -0x77
assert xNegativelnt == -119

Decimal literals

The decimal literal types are the same as in Java:

e float
e double

* java.math.BigDecimal
You can create decimal numbers of those types with the following declarations:
// primitive types

float f = 1.234
double d = 2.345

// infinite precision
BigDecimal bd = 3.456

Decimals can use exponents, with the e or E exponent letter, followed by an optional sign, and an
integral number representing the exponent:

assert 1e3 == 1 .000.0
assert 2E4 == 20 _000.0
assert 3e+1 == 30.0
assert 4E-2 == 0.04
assert 5e-1 == 0.5

Conveniently for exact decimal number calculations, Groovy chooses java.math.BigDecimal as its
decimal number type. In addition, both float and double are supported, but require an explicit type
declaration, type coercion or suffix. Even if BigDecimal is the default for decimal numbers, such
literals are accepted in methods or closures taking float or double as parameter types.

Decimal numbers can’t be represented using a binary, octal or hexadecimal

NOTE .
representation.

Underscore in literals

When writing long literal numbers, it’s harder on the eye to figure out how some numbers are
grouped together, for example with groups of thousands, of words, etc. By allowing you to place
underscore in number literals, it’s easier to spot those groups:

long creditCardNumber = 1234_5678_9012_3456L

long socialSecurityNumbers = 999_99_9999L

double monetaryAmount = 12_345_132.12

long hexBytes = @xFF_EC_DE_5E

long hexWords = @xFFEC_DES5E

long maxLong = Ox7fff_ffff_ffff_fffflL

long alsoMaxLong = 9_223_372_036_854_775_807L

long bytes = 0b11010010_01101001_10010100_10010010

Number type suffixes

We can force a number (including binary, octals and hexadecimals) to have a specific type by giving

20

a suffix (see table below), either uppercase or lowercase.

Type Suffix
Biginteger Gorg
Long Lorl
Integer Tori
BigDecimal Gorg
Double Dord
Float Forf
Examples:

assert 421 == Integer.valueOf('42")

assert 42i == Integer.valueOf('42') // lowercase i more readable

assert 123L == Long.valueOf("123") // uppercase L more readable

assert 2147483648 == Long.valueOf('2147483648') // Long type used, value too large for
an Integer

assert 456G == new BigInteger('456")

assert 456g == new BigInteger('456")

assert 123.45 == new BigDecimal('123.45") // default BigDecimal type used
assert .321 == new BigDecimal('.321")

assert 1.200065D == Double.valueOf('1.200065")

assert 1.234F == Float.valueOf('1.234")

assert 1.23E23D == Double.valueOf('1.23E23")

assert @b1111L.class == Long // binary

assert OxFFi.class == Integer // hexadecimal

assert 034G.class == BigInteger // octal

Math operations

Although operators are covered in more detail elsewhere, it’s important to discuss the behavior of
math operations and what their resulting types are.

Division and power binary operations aside (covered below),

* binary operations between byte, char, short and int resultin int
* binary operations involving long with byte, char, short and int result in long
* binary operations involving BigInteger and any other integral type result in BigInteger

* binary operations involving BigDecimal with byte, char, short, int and BigInteger result in
BigDecimal

* binary operations between float, double and BigDecimal result in double

* binary operations between two BigDecimal result in BigDecimal

The following table summarizes those rules:

21

byte char short int long BigInteg float double BigDeci

er mal
byte int int int int long Biginteg double double BigDeci
er mal
char int int int long Biginteg double double BigDeci
er mal
short int int long Biginteg double double BigDeci
er mal
int int long Biginteg double double BigDeci
er mal
long long Biginteg double double BigDeci
er mal
BigInteg Biginteg double double BigDeci
er er mal
float double double double
double double double
BigDeci BigDeci
mal mal

Thanks to Groovy’s operator overloading, the usual arithmetic operators work as
NOTE well with BigInteger and BigDecimal, unlike in Java where you have to use explicit
methods for operating on those numbers.

The case of the division operator

The division operators / (and /= for division and assignment) produce a double result if either
operand is a float or double, and a BigDecimal result otherwise (when both operands are any
combination of an integral type short, char, byte, int, long, BigInteger or BigDecimal).

BigDecimal division is performed with the divide() method if the division is exact (i.e. yielding a
result that can be represented within the bounds of the same precision and scale), or using a
MathContext with a precision of the maximum of the two operands' precision plus an extra precision
of 10, and a scale of the maximum of 10 and the maximum of the operands' scale.

For integer division like in Java, you should use the intdiv() method, as Groovy

NOTE
doesn’t provide a dedicated integer division operator symbol.

The case of the power operator

The power operation is represented by the ** operator, with two parameters: the base and the
exponent. The result of the power operation depends on its operands, and the result of the
operation (in particular if the result can be represented as an integral value).

The following rules are used by Groovy’s power operation to determine the resulting type:

22

http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#precision()
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#scale()

* If the exponent is a decimal value
o if the result can be represented as an Integer, then return an Integer
o else if the result can be represented as a Long, then return a Long
o otherwise return a Double

* If the exponent is an integral value

o if the exponent is strictly negative, then return an Integer, Long or Double if the result value
fits in that type

o if the exponent is positive or zero
= if the base is a BigDecimal, then return a BigDecimal result value
= if the base is a BigInteger, then return a BigInteger result value

= if the base is an Integer, then return an Integer if the result value fits in it, otherwise a
BigInteger

= if the base is a Long, then return a Long if the result value fits in it, otherwise a BigInteger

We can illustrate those rules with a few examples:

// base and exponent are ints and the result can be represented by an Integer
assert 2 ** 3 instanceof Integer // 8
assert 10 *¥* 9 instanceof Integer // 1_000_000_000

// the base is a long, so fit the result in a Long
// (although it could have fit in an Integer)
assert 5L ** 2 instanceof Long // 25

// the result can't be represented as an Integer or Long, so return a BigInteger
assert 100 ** 10 instanceof BigInteger // 10e20
assert 1234 ** 123 instanceof BigInteger // 170515806212727042875. ..

// the base is a BigDecimal and the exponent a negative int
// but the result can be represented as an Integer
assert 0.5 ** -2 instanceof Integer // 4

// the base is an int, and the exponent a negative float
// but again, the result can be represented as an Integer
assert 1 ** -0.3f instanceof Integer /71

// the base is an int, and the exponent a negative int

// but the result will be calculated as a Double

// (both base and exponent are actually converted to doubles)
assert 10 o instanceof Double /0.1

// the base is a BigDecimal, and the exponent is an int, so return a BigDecimal
assert 1.2 ** 10 instanceof BigDecimal // 6.1917364224

// the base is a float or double, and the exponent is an int
// but the result can only be represented as a Double value

23

assert 3.4f ** § instanceof Double // 454.35430372146965
assert 5.6d ** 2 instanceof Double // 31.359999999999996

// the exponent is a decimal value

// and the result can only be represented as a Double value

assert 7.8 ** 1.9 instanceof Double // 49.542708423868476
assert 2 ** 0.1f instanceof Double // 1.0717734636432956

Booleans

Boolean is a special data type that is used to represent truth values: true and false. Use this data
type for simple flags that track true/false conditions.

Boolean values can be stored in variables, assigned into fields, just like any other data type:

def myBooleanVariable = true
boolean untypedBooleanVar = false
booleanField = true

true and false are the only two primitive boolean values. But more complex boolean expressions
can be represented using logical operators.

In addition, Groovy has special rules (often referred to as Groovy Truth) for coercing non-boolean
objects to a boolean value.

Lists

Groovy uses a comma-separated list of values, surrounded by square brackets, to denote lists.
Groovy lists are plain JDK java.util.List, as Groovy doesn’t define its own collection classes. The
concrete list implementation used when defining list literals are java.util.ArraylList by default,
unless you decide to specify otherwise, as we shall see later on.

def numbers = [1, 2, 3] ©)

assert numbers instanceof List @
assert numbers.size() == ®

® We define a list numbers delimited by commas and surrounded by square brackets, and we
assign that list into a variable

@ The list is an instance of Java’s java.util.List interface
® The size of the list can be queried with the size() method, and shows our list contains 3

elements

In the above example, we used a homogeneous list, but you can also create lists containing values
of heterogeneous types:

24

def heterogeneous = [1, "a", true] @

@ Our list here contains a number, a string and a boolean value

We mentioned that by default, list literals are actually instances of java.util.Arraylist, but it is
possible to use a different backing type for our lists, thanks to using type coercion with the as
operator, or with explicit type declaration for your variables:

def arraylList = [1, 2, 3]
assert arraylList instanceof java.util.ArraylList

def linkedList = [2, 3, 4] as LinkedList ©)
assert linkedlList instanceof java.util.LinkedList

LinkedList otherLinked = [3, 4, 5] @
assert otherlLinked instanceof java.util.LinkedlList

@ We use coercion with the as operator to explicitly request a java.util.LinkedList
implementation

@ We can say that the variable holding the list literal is of type java.util.LinkedList
You can access elements of the list with the [] subscript operator (both for reading and setting

values) with positive indices or negative indices to access elements from the end of the list, as well
as with ranges, and use the << leftShift operator to append elements to a list:

def letters = ['a', 'b", 'c¢', 'd']

assert letters[0] == 'a' @
assert letters[1] == 'b'

assert letters[-1] == 'd' @

assert letters[-2] == 'c

letters[2] = 'C' ®
assert letters[2] == 'C'

letters << 'e' @

assert letters[4] == 'e'

assert letters[-1] == 'e'

assert letters[1, 3] == ['b', 'd'] ®

assert letters[2..4] == ['C', 'd', 'e'] ®

@ Access the first element of the list (zero-based counting)

@ Access the last element of the list with a negative index: -1 is the first element from the end of
the list

25

® Use an assignment to set a new value for the third element of the list
@ Use the << leftShift operator to append an element at the end of the list
® Access two elements at once, returning a new list containing those two elements

® Use a range to access a range of values from the list, from a start to an end element position

As lists can be heterogeneous in nature, lists can also contain other lists to create multidimensional

lists:

def multi = [[0, 1], [2, 3]1] @D
assert multi[1][0] == @

@ Define a list of numbers

@ Access the second element of the top-most list, and the first element of the inner list

Arrays

Groovy reuses the list notation for arrays, but to make such literals arrays, you need to explicitly

define the type of the array through coercion or type declaration.

String[] arrStr = ['Ananas', 'Banana', 'Kiwi'] @

assert arrStr instanceof String[] @
assert !(arrStr instanceof List)

def numArr = [1, 2, 3] as int[] ©)

assert numArr instanceof int[] @
assert numArr.size() ==

@ Define an array of strings using explicit variable type declaration
@ Assert that we created an array of strings
® Create an array of ints with the as operator

@ Assert that we created an array of primitive ints

You can also create multi-dimensional arrays:

def matrix3 = new Integer[3][3] O)
assert matrix3.size() ==

Integer[][] matrix2 @
matrix2 = [[1, 2], [3, 4]]
assert matrix2 instanceof Integer[][]

@ You can define the bounds of a new array

26

@ Or declare an array without specifying its bounds

Access to elements of an array follows the same notation as for lists:

String[] names = ['Cédric', 'Guillaume', 'Jochen', 'Paul']

assert names[@] == 'Cédric’ ©)
names[2] = 'Blackdrag’ @
assert names[2] == 'Blackdrag’

@ Retrieve the first element of the array

@ Set the value of the third element of the array to a new value

Java-style array initialization

Groovy has always supported literal list/array definitions using square brackets and has avoided
Java-style curly braces so as not to conflict with closure definitions. In the case where the curly
braces come immediately after an array type declaration however, there is no ambiguity with
closure definitions, so Groovy 3 and above support that variant of the Java array initialization
expression.

Examples:
def primes = new int[] {2, 3, 5, 7, 11}

assert primes.size() == 5 && primes.sum() == 28
assert primes.class.name == '[I'

def pets = new String[] {'cat', 'dog'}
assert pets.size() == 2 &% pets.sum() == 'catdog'
assert pets.class.name == '[Ljava.lang.String;'

// traditional Groovy alternative still supported
String[] groovyBooks = ['Groovy in Action', 'Making Java Groovy']
assert groovyBooks.every{ it.contains('Groovy') }

Maps

Sometimes called dictionaries or associative arrays in other languages, Groovy features maps. Maps
associate keys to values, separating keys and values with colons, and each key/value pairs with
commas, and the whole keys and values surrounded by square brackets.

def colors = [red: '#FFQ00Q', green: '#0OFFQQ', blue: '#000OFF'] @

assert colors['red'] == '#FF0000' @)

assert colors.green == '#00FF00' ©)
colors['pink'] = "HFFOOFF')
colors.yellow = "#FFFFoQ' ®

27

assert colors.pink == '#FFOOFF'
assert colors['yellow'] == "#FFFF0Q'

assert colors instanceof java.util.LinkedHashMap

@ We define a map of string color names, associated with their hexadecimal-coded html colors
@ We use the subscript notation to check the content associated with the red key

(3 We can also use the property notation to assert the color green’s hexadecimal representation
@ Similarly, we can use the subscript notation to add a new key/value pair

® Or the property notation, to add the yellow color

NOTE When using names for the keys, we actually define string keys in the map.

NOTE Groovy creates maps that are actually instances of java.util.LinkedHashMap.

If you try to access a key which is not present in the map:

assert colors.unknown == null

def emptyMap = [:]
assert emptyMap.anyKey == null

You will retrieve a null result.

In the examples above, we used string keys, but you can also use values of other types as keys:

def numbers = [1: 'one', 2: "two']

assert numbers[1] == 'one'

Here, we used numbers as keys, as numbers can unambiguously be recognized as numbers, so
Groovy will not create a string key like in our previous examples. But consider the case you want to
pass a variable in lieu of the key, to have the value of that variable become the key:

def key = 'name’
def person = [key: 'Guillaume'] @)

assert !person.containsKey('name') @
assert person.containsKey('key') ©)

@ The key associated with the 'Guillaume' name will actually be the "key" string, not the value
associated with the key variable

@ The map doesn’t contain the 'name' key

28

® Instead, the map contains a 'key' key

You can also pass quoted strings as well as keys: ["'name": "Guillaume"]. This is
NOTE mandatory if your key string isn’t a valid identifier, for example if you wanted to
create a string key containing a dash like in: ["street-name": "Main street"].

When you need to pass variable values as keys in your map definitions, you must surround the
variable or expression with parentheses:

person = [(key): 'Guillaume'] ©)

assert person.containsKey('name') @)
assert !person.containsKey('key') ®

@ This time, we surround the key variable with parentheses, to instruct the parser we are passing a
variable rather than defining a string key

@ The map does contain the name key

® But the map doesn’t contain the key key as before

Operators

This chapter covers the operators of the Groovy programming language.

Arithmetic operators

Groovy supports the usual familiar arithmetic operators you find in mathematics and in other
programming languages like Java. All the Java arithmetic operators are supported. Let’s go through
them in the following examples.

Normal arithmetic operators

The following binary arithmetic operators are available in Groovy:

Operator Purpose Remarks

+ addition

- subtraction

* multiplication

/ division Use intdiv() for integer

division, and see the section
about integer division for more
information on the return type
of the division.

o°

remainder

29

Operator Purpose Remarks

o power See the section about the power

operation for more information
on the return type of the
operation.

Here are a few examples of usage of those operators:

+
N
1
1

assert 1
assert 4 -
assert 3 *

assert 3 /2 ==1.5
assert 10 % 3 ==
assert 2 ** 3 ==

Unary operators

The + and - operators are also available as unary operators:

assert +3 ==
assert -4 ==0 - 4

assert -(-1) == ©)

@ Note the usage of parentheses to surround an expression to apply the unary minus to that
surrounded expression.

In terms of unary arithmetics operators, the ++ (increment) and -- (decrement) operators are
available, both in prefix and postfix notation:

2
at+ * 3 ©)

def a
def b

assert a == 3 && b ==

def c
def d

I n
o w
|
*
N
®

assert ¢ == 2 && d ==

def e
def f

1
++e + 3 ®

assert e == 2 &§ f ==

def g =
def h = --g + 1 @

I
~

30

assert g == 3 && h ==

@ The postfix increment will increment a after the expression has been evaluated and assigned
into b

@ The postfix decrement will decrement c after the expression has been evaluated and assigned
into d

® The prefix increment will increment e before the expression is evaluated and assigned into f

@ The prefix decrement will decrement g before the expression is evaluated and assigned into h
For the unary not operator on Booleans, see Conditional operators.

Assignment arithmetic operators

The binary arithmetic operators we have seen above are also available in an assignment form:

o 4=

Let’s see them in action:

def a = 4
a+=3

assert a ==

def b =5
=

assert b ==

def ¢c =5
g ¥ g

assert ¢ == 15

def d = 10
d /=2
assert d ==
def e = 10
e %= 3

31

assert e ==

def f = 3
f %522

assert f ==

Relational operators

Relational operators allow comparisons between objects, to know if two objects are the same or
different, or if one is greater than, less than, or equal to the other.

The following operators are available:

Operator Purpose

== equal

I= different

< less than

<= less than or equal

> greater than

>= greater than or equal

=== identical (Since Groovy 3.0.0)

== not identical (Since Groovy 3.0.0)

Here are some examples of simple number comparisons using these operators:

assert 1 + 2 ==
assert 3 =4

assert -2 < 3
assert 2 <=2

assert 3 <=4

assert 5 > 1
assert 5 >= -2

Both === and !== are supported which are the same as calling the is() method, and negating a call
to the is() method respectively.

import groovy.transform.EqualsAndHashCode

©EqualsAndHashCode
class Creature { String type }

32

def cat = new Creature(type: 'cat')
def copyCat = cat
def lion = new Creature(type: 'cat')

assert cat.equals(lion) // Java logical equality
assert cat == lion // Groovy shorthand operator

assert cat.is(copyCat) // Groovy identity
assert cat === copyCat // operator shorthand
assert cat !== lion // negated operator shorthand

Logical operators
Groovy offers three logical operators for boolean expressions:

» &&: logical "and"
* ||:logical "or"

* I:]ogical "not"

Let’s illustrate them with the following examples:

assert !false ©)
assert true && true @
assert true || false ®

@ "not" false is true
@ true "and" true is true

@ true "or" false is true
Precedence
The logical "not" has a higher priority than the logical "and".
assert (!false && false) == false @
@ Here, the assertion is true (as the expression in parentheses is false), because "not" has a higher

precedence than "and", so it only applies to the first "false" term; otherwise, it would have
applied to the result of the "and", turned it into true, and the assertion would have failed

The logical "and" has a higher priority than the logical "or".

assert true || true && false O)

@ Here, the assertion is true, because "and" has a higher precedence than "or", therefore the "or" is
executed last and returns true, having one true argument; otherwise, the "and" would have

33

executed last and returned false, having one false argument, and the assertion would have
failed

Short-circuiting

The logical || operator supports short-circuiting: if the left operand is true, it knows that the result
will be true in any case, so it won’t evaluate the right operand. The right operand will be evaluated
only if the left operand is false.

Likewise for the logical && operator: if the left operand is false, it knows that the result will be false
in any case, so it won’t evaluate the right operand. The right operand will be evaluated only if the
left operand is true.

boolean checkIfCalled() { @
called = true

}

called = false
true || checkIfCalled()
assert !called @

called = false
false || checkIfCalled()
assert called ®

called = false
false && checkIfCalled()
assert !called)

called = false
true && checkIfCalled()
assert called ®

@ We create a function that sets the called flag to true whenever it’s called

@ In the first case, after resetting the called flag, we confirm that if the left operand to || is true,
the function is not called, as || short-circuits the evaluation of the right operand

® In the second case, the left operand is false and so the function is called, as indicated by the fact
our flag is now true

@ Likewise for &&, we confirm that the function is not called with a false left operand

® But the function is called with a true left operand

Bitwise and bit shift operators

Bitwise operators

Groovy offers four bitwise operators:

e &: bitwise "and"

34

* |: bitwise "or"
e A: bitwise "xor" (exclusive "or")

* ~: bitwise negation

Bitwise operators can be applied on arguments which are of type byte, short, int, long, or
BigInteger. If one of the arguments is a BigInteger, the result will be of type BigInteger; otherwise,
if one of the arguments is a long, the result will be of type long; otherwise, the result will be of type
int:

int a = 0b00101010
assert a == 42

int b = 0b00001000
assert b ==

assert (a & a) == a
assert (a & b) ==
assert (a | a) ==
assert (a | b) == a

int mask = @b11111111

assert ((a M a) & mask) == 0b00000000
assert ((a A b) & mask) == 0b00100010
assert ((~a) & mask) == 0b11010101

@O &V

@ bitwise and

@ bitwise and returns common bits

® bitwise or

@ bitwise or returns all '1' bits

® setting a mask to check only the last 8 bits

® bitwise exclusive or on self returns 0

@ bitwise exclusive or

bitwise negation

It’s worth noting that the internal representation of primitive types follow the Java Language

Specification. In particular, primitive types are signed, meaning that for a bitwise negation, it is
always good to use a mask to retrieve only the necessary bits.

In Groovy, bitwise operators are overloadable, meaning that you can define the behavior of those
operators for any kind of object.

Bit shift operators

Groovy offers three bit shift operators:

o <<:left shift

* >>: right shift

35

http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html

* >>>: right shift unsigned

All three operators are applicable where the left argument is of type byte, short, int, or long. The
first two operators can also be applied where the left argument is of type BigInteger. If the left
argument is a BigInteger, the result will be of type BigInteger; otherwise, if the left argument is a
long, the result will be of type long; otherwise, the result will be of type int:

assert 12.equals(3 << 2)
assert 24L.equals(3L << 3)
assert 48G.equals(3G << 4)

©Oe

assert 4095 == -200 >>> 20

assert -1 == -200 >> 20
assert 2G == 5G >> 1
assert -3G == -5G >> 1

@ equals method used instead of == to confirm result type

In Groovy, bit shift operators are overloadable, meaning that you can define the behavior of those
operators for any kind of object.

Conditional operators

Not operator

The "not" operator is represented with an exclamation mark (!) and inverts the result of the
underlying boolean expression. In particular, it is possible to combine the not operator with the
Groovy truth:

assert (!true) == false @)
assert (!'foo') == false @)
assert (1'") == true ®

@ the negation of true is false
@ 'foo' is a non-empty string, evaluating to true, so negation returns false

® " is an empty string, evaluating to false, so negation returns true

Ternary operator

The ternary operator is a shortcut expression that is equivalent to an if/else branch assigning some
value to a variable.

Instead of:
if (string!=null && string.length()>0) {
result = 'Found'

} else {
result = 'Not found'

36

You can write:

result = (string!=null && string.length()>@) ? 'Found' : 'Not found'

The ternary operator is also compatible with the Groovy truth, so you can make it even simpler:

result = string ? 'Found' : 'Not found'

Elvis operator

The "Elvis operator” is a shortening of the ternary operator. One instance of where this is handy is
for returning a 'sensible default' value if an expression resolves to false-ish (as in Groovy truth). A
simple example might look like this:

displayName = user.name ? user.name : 'Anonymous' @
displayName = user.name ?: 'Anonymous' @

@ with the ternary operator, you have to repeat the value you want to assign

@ with the Elvis operator, the value, which is tested, is used if it is not false-ish

Usage of the Elvis operator reduces the verbosity of your code and reduces the risks of errors in
case of refactorings, by removing the need to duplicate the expression which is tested in both the
condition and the positive return value.

Elvis assignment operator

Groovy 3.0.0 introduces the Elvis operator, for example:

import groovy.transform.ToString

@ToString(includePackage = false)
class Element {

String name

int atomicNumber

¥
def he = new Element(name: 'Helium')
he.with {
name = name ?: 'Hydrogen' // existing Elvis operator
atomicNumber 7= 2 // new Elvis assignment shorthand
}

assert he.toString() == 'Element(Helium, 2)'

37

Object operators

Safe navigation operator

The Safe Navigation operator is used to avoid a NullPointerException. Typically when you have a
reference to an object you might need to verify that it is not null before accessing methods or
properties of the object. To avoid this, the safe navigation operator will simply return null instead
of throwing an exception, like so:

def person = Person.find { it.id == 123 } O)
def name = person?.name @
assert name == null ®

@ find will return a null instance
@ use of the null-safe operator prevents from a NullPointerException

@ result is null

Direct field access operator

Normally in Groovy, when you write code like this:

class User {

public final String name @
User(String name) { this.name = name}
String getName() { "Name: $name" } @)
}
def user = new User('Bob")
assert user.name == 'Name: Bob' ®
@ public field name

@ a getter for name that returns a custom string

® calls the getter

The user.name call triggers a call to the property of the same name, that is to say, here, to the getter
for name. If you want to retrieve the field instead of calling the getter, you can use the direct field
access operator:

assert user.@name == 'Bob' ©)
@ use of .@ forces usage of the field instead of the getter

Method pointer operator

The method pointer operator (.&) can be used to store a reference to a method in a variable, in
order to call it later:

38

def str = 'example of method reference'
def fun = str.&toUpperCase

def upper = fun()

assert upper == str.toUpperCase()

®OEO

@ the str variable contains a String

@ we store a reference to the toUpperCase method on the str instance inside a variable named fun
® fun can be called like a regular method

@ we can check that the result is the same as if we had called it directly on str

There are multiple advantages in using method pointers. First of all, the type of such a method

pointer is a groovy.lang.Closure, so it can be used in any place a closure would be used. In
particular, it is suitable to convert an existing method for the needs of the strategy pattern:

def transform(List elements, Closure action) { @
def result = []
elements.each {
result << action(it)

}
result
}
String describe(Person p) { @
"$p.name is $p.age"
}
def action = this.&describe ©)
def list = [
new Person(name: 'Bob', age: 42),
new Person(name: 'Julia', age: 35)] ()

assert transform(list, action) == ['Bob is 42', 'Julia is 35'] ®

@ the transform method takes each element of the list and calls the action closure on them,
returning a new list

@ we define a function that takes a Person and returns a String

® we create a method pointer on that function

@ we create the list of elements we want to collect the descriptors

® the method pointer can be used where a Closure was expected

Method pointers are bound by the receiver and a method name. Arguments are resolved at

runtime, meaning that if you have multiple methods with the same name, the syntax is not
different, only resolution of the appropriate method to be called will be done at runtime:

def doSomething(String str) { str.toUpperCase() }
def doSomething(Integer x) { 2*x }

def reference = this.&doSomething

assert reference('foo') == 'FOO'

®OEOC

39

assert reference(123) == 246 ®

@ define an overloaded doSomething method accepting a String as an argument

@ define an overloaded doSomething method accepting an Integer as an argument

® create a single method pointer on doSomething, without specifying argument types
@ using the method pointer with a String calls the String version of doSomething

® using the method pointer with an Integer calls the Integer version of doSomething

To align with Java 8 method reference expectations, in Groovy 3 and above, you can use new as the
method name to obtain a method pointer to the constructor:

def foo = BigInteger.&new
def fortyTwo = foo('42")
assert fortyTwo == 426G

Also in Groovy 3 and above, you can obtain a method pointer to an instance method of a class. This
method pointer takes an additional parameter being the receiver instance to invoke the method on:

def instanceMethod = String.&toUpperCase
assert instanceMethod('foo') == 'F00'

For backwards compatibility, any static methods that happen to have the correct parameters for the
call will be given precedence over instance methods for this case.

Method reference operator

The Parrot parser in Groovy 3+ supports the Java 8+ method reference operator. The method
reference operator (::) can be used to reference a method or constructor in contexts expecting a
functional interface. This overlaps somewhat with the functionality provided by Groovy’s method
pointer operator. Indeed, for dynamic Groovy, the method reference operator is just an alias for the
method pointer operator. For static Groovy, the operator results in bytecode similar to the bytecode
that Java would produce for the same context.

Some examples highlighting various supported method reference cases are shown in the following
script:

import groovy.transform.CompileStatic
import static java.util.stream.Collectors.tolist

@CompileStatic
void methodRefs() {

assert 6G == [1G, 2G, 3G].stream().reduce(@0G, BigInteger::add)
®

assert [4G, 5G, 6G] == [1G, 2G, 3G].stream().map(3G::add).collect(toList())
@

40

assert [1G, 2G, 3G] == [1L, 2L, 3L].stream().map(BigInteger::valueOf).collect
(toList()) ®

assert [1G, 2G, 3G] == [1L, 2L, 3L].stream().map(3G::valueOf).collect(toList())
@
}

methodRefs()

@ class instance method reference: add(BigInteger val) is an instance method in BigInteger

@ object instance method reference: add(BigInteger val) is an instance method for object 3G

® class static method reference: valueOf(long val) is a static method for class BigInteger

@ object static method reference: valueOf(long val) is a static method for object 3G (some consider

this bad style in normal circumstances)

Some examples highlighting various supported constructor reference cases are shown in the
following script:

@CompileStatic
void constructorRefs() {

assert [1, 2, 3] ==["1", '2", '3'].stream().map(Integer::valueOf).collect(
toList()) @

def result = [1, 2, 3].stream().toArray(Integer[]::new)

@
assert result instanceof Integer[]
assert result.toString() == "[1, 2, 3]’
}
constructorRefs()

@ class constructor reference

@ array constructor reference

Regular expression operators

Pattern operator

The pattern operator (~) provides a simple way to create a java.util.regex.Pattern instance:

def p = ~/foo/
assert p instanceof Pattern

while in general, you find the pattern operator with an expression in a slashy-string, it can be used
with any kind of String in Groovy:

41

~'foo'

~"f00"

~$/dollar/slashy $ string/$
~"${pattern}"

®OOO

@ using single quote strings
@ using double quotes strings
® the dollar-slashy string lets you use slashes and the dollar sign without having to escape them

@ you can also use a GString!

While you can use most String forms with the Pattern, Find and Match operators,
NOTE we recommend using the slashy string most of the time to save having to remember
the otherwise needed escaping requirements.

Find operator

Alternatively to building a pattern, you can use the find operator =~ to directly create a
java.util.regex.Matcher instance:

def text = "some text to match"
def m = text =~ /match/

assert m instanceof Matcher

if (Im) {

throw new RuntimeException("Oops, text not found!")

CXSXS

@ =~ creates a matcher against the text variable, using the pattern on the right hand side
@ the return type of =~ is a Matcher

® equivalent to calling if (!m.find(0))

Since a Matcher coerces to a boolean by calling its find method, the =~ operator is consistent with the
simple use of Perl’s =~ operator, when it appears as a predicate (in if, 7:, etc.). When the intent is to
iterate over matches of the specified pattern (in while, etc.) call find() directly on the matcher or
use the iterator DGM.

Match operator

The match operator (==~) is a slight variation of the find operator, that does not return a Matcher but
a boolean and requires a strict match of the input string:

m = text ==~ /match/
assert m instanceof Boolean
if (m) {

throw new RuntimeException("Should not reach that point!")

CXSXS

42

@ ==~ matches the subject with the regular expression, but match must be strict
@ the return type of ==~ is therefore a boolean

® equivalent to calling if (text ==~ /match/)

Comparing Find vs Match operators

Typically, the match operator is used when the pattern involves a single exact match, otherwise the
find operator might be more useful.

assert 'two words' ==~ /\S+\s+\S+/
assert 'two words' ==~ /A\S+\s+\S+$/ ©)
assert !(' leading space' ==~ /\S+\s+\S+/) @

def m1 = "two words' =~ /M\S+\s+\S+$/

assert ml.size() == 1

def m2 = "now three words' =~ /M\S+\s+\S+$/
assert m2.size() == 0

def m3 = "now three words' =~ /\S+\s+\S+/
assert m3.size() == 1

assert m3[0] == 'now three'

def m4 = ' leading space' =~ /\S+\s+\S+/
assert md.size() ==

assert m4[@] == 'leading space'

def m5 = 'and with four words' =~ /\S+\s+\S+/
assert m5.size() ==
assert m5[0] == 'and with'

assert m5[1] == 'four words'

© O®O

Q

@ equivalent, but explicit A and $ are discouraged since they aren’t needed
@ no match because of leading space

® one match

@ A and $ indicate exact match required

® zero matches

® one match, greedily starting at first word

@ one match, ignores leading space

two matches

Other operators

Spread operator

The Spread-dot Operator (*.), often abbreviated to just Spread Operator, is used to invoke an action
on all items of an aggregate object. It is equivalent to calling the action on each item and collecting
the result into a list:

43

class Car {
String make
String model
}
def cars = [
new Car(make: 'Peugeot', model: '508'),
new Car(make: 'Renault', model: 'Clio')]
def makes = cars*.make
assert makes == ['Peugeot', 'Renault']

CXSXS

® build a list of Car items. The list is an aggregate of objects.

@ call the spread operator on the list, accessing the make property of each item

® returns a list of strings corresponding to the collection of make items

The expression cars*.make is equivalent to cars.collect{ it.make }. Groovy’s GPath notation allows
a short-cut when the referenced property isn’t a property of the containing list, in that case it is

automatically spread. In the previously mentioned case, the expression cars.make can be used,
though retaining the explicit spread-dot operator is often recommended.

The spread operator is null-safe, meaning that if an element of the collection is null, it will return
null instead of throwing a NullPointerException:

cars = [
new Car(make: 'Peugeot', model: '508'),
null, ©)
new Car(make: 'Renault', model: 'Clio')]
assert cars*.make == ['Peugeot', null, 'Renault'] ®
assert null*.make == null ®

@ build a list for which one of the elements is null
@ using the spread operator will not throw a NullPointerException

® the receiver might also be null, in which case the return value is null

The spread operator can be used on any class which implements the Iterable interface:

class Component {
Integer id
String name
}
class CompositeObject implements Iterable<Component> {
def components = [
new Component(id: 1, name: 'Foo'),
new Component(id: 2, name: 'Bar')]

@Override

Iterator<Component> iterator() {
components.iterator()

44

}
}
def composite = new CompositeObject()
assert composite*.id == [1,2]
assert composite*.name == ['Foo', 'Bar']

Use multiple invocations of the spread-dot operator (here cars*.models*.name) when working with
aggregates of data structures which themselves contain aggregates:

class Make {
String name
List<Model> models

}

@Canonical
class Model {
String name

}

def cars = [
new Make(name: 'Peugeot’,
models: [new Model('408'), new Model('508')]),
new Make(name: 'Renault’,
models: [new Model('Clio'), new Model('Captur')])
]

def makes = cars*.name
assert makes == ['Peugeot', 'Renault']

def models = cars*.models*.name

assert models == [['408', '508'], ['Clio', 'Captur']]

assert models.sum() == ['408"', '508', 'Clio', 'Captur'] // flatten one level

assert models.flatten() == ['408', '508"', 'Clio', 'Captur'] // flatten all levels (one
in this case)

Consider using the collectNested DGM method instead of the spread-dot operator for collections of
collections:

class Car {
String make
String model
¥
def cars = [
[
new Car(make: 'Peugeot', model: '408'),
new Car(make: 'Peugeot', model: '508")
1, [

new Car(make: 'Renault', model: 'Clio'),

45

new Car(make: 'Renault', model: 'Captur')
]

]
def models = cars.collectNested{ it.model }

assert models == [['408', '508'], ['Clio', 'Captur']]

Spreading method arguments

There may be situations when the arguments of a method call can be found in a list that you need
to adapt to the method arguments. In such situations, you can use the spread operator to call the
method. For example, imagine you have the following method signature:

int function(int x, int y, int z) {
x*y+z

}

then if you have the following list:

def args = [4,5,6]

you can call the method without having to define intermediate variables:

assert function(*args) == 26

It is even possible to mix normal arguments with spread ones:

args = [4]
assert function(*args,5,6) == 26

Spread list elements

When used inside a list literal, the spread operator acts as if the spread element contents were
inlined into the list:

def items = [4,5]
def list = [1,2,3,*items,6]
assert list == [1,2,3,4,5,6]

CXSXS)

@ items is a list
@ we want to insert the contents of the items list directly into 1ist without having to call addA11

® the contents of items has been inlined into 1ist

46

Spread map elements

The spread map operator works in a similar manner as the spread list operator, but for maps. It
allows you to inline the contents of a map into another map literal, like in the following example:

def m1 = [c:3, d:4] @
def map = [a:1, b:2, *:m1] ®)
assert map == [a:1, b:2, c:3, d:4] ®
@ m1 is the map that we want to inline
@ we use the *:m1 notation to spread the contents of m1 into map

® map contains all the elements of m1

The position of the spread map operator is relevant, like illustrated in the following example:

def m1 = [c:3, d:4] ©)
def map = [a:1, b:2, *:m1, d: 8] @)
assert map == [a:1, b:2, c:3, d:8] ®

@ m1 is the map that we want to inline

@ we use the *:m1 notation to spread the contents of m1 into map, but redefine the key d after
spreading

3 map contains all the expected keys, but d was redefined

Range operator

Groovy supports the concept of ranges and provides a notation (. .) to create ranges of objects:

def range = 0..5

assert (0..5).collect() == [0, 1, 2, 3, 4, 5]
assert (0..<5).collect() == [0, 1, 2, 3, 4]
assert (0<..5).collect() == [1, 2, 3, 4, 5]
assert (0<..<5).collect() == [1, 2, 3, 4]
assert (0..5) instanceof List

assert (0..5).size() ==

QOO®OEO

@ a simple range of integers, stored into a local variable
@ an IntRange, with inclusive bounds

® an IntRange, with exclusive upper bound

@ an IntRange, with exclusive lower bound

® an IntRange, with exclusive lower and upper bounds
® a groovy.lang.Range implements the List interface

@ meaning that you can call the size method on it

47

Ranges implementation is lightweight, meaning that only the lower and upper bounds are stored.
You can create a range from any Comparable object that has next() and previous() methods to
determine the next / previous item in the range. For example, you can create a range of characters
this way:

assert ('a'..'d').collect() == ['a",'b","'c","'d"]

Spaceship operator

The spaceship operator (<=>) delegates to the compareTo method:

assert (1 <=> 1) ==
assert (1 <=> 2) == -1
assert (2 <=> 1) ==
assert ('a' <=> 'z') == -1

Subscript operator

The subscript operator is a shorthand notation for getAt or putAt, depending on whether you find it
on the left hand side or the right hand side of an assignment:

def list = [0,1,2,3,4]
assert list[2] == 2

list[2] = 4

assert 1list[0..2] == [0,1,4]
list[0..2] = [6,6,6]

assert list == [6,6,6,3,4]

O®OOO

@ [2] can be used instead of getAt(2)

@ if on left hand side of an assignment, will call putAt
® getAt also supports ranges

@ so does putAt

® the list is mutated

The subscript operator, in combination with a custom implementation of getAt/putAt is a
convenient way for destructuring objects:

class User {
Long 1id
String name
def getAt(int i) { ©)
switch (i) {
case 0: return id
case 1: return name

48

throw new IllegalArgumentException("No such element $i")

}
void putAt(int i, def value) { @
switch (i) {
case @0: id = value; return
case 1: name = value; return
}
throw new IllegalArgumentException("No such element $i")
}

}

def user = new User(id: 1, name: 'Alex') ®
assert user[0] == @
assert user[1] == 'Alex' ®
user[1] = 'Bob' ®
assert user.name == 'Bob’ @)

@ the User class defines a custom getAt implementation

@ the User class defines a custom putAt implementation

® create a sample user

@ using the subscript operator with index 0 allows retrieving the user id

® using the subscript operator with index 1 allows retrieving the user name

® we can use the subscript operator to write to a property thanks to the delegation to putAt

@ and check that it’s really the property name which was changed

Safe index operator

Groovy 3.0.0 introduces safe indexing operator, i.e. ?[], which is similar to ?.. For example:

String[] array = ['a', 'b"]

assert 'b' == array?[1] // get using normal array index
array?[1] = 'c' // set using normal array index
assert 'c' == array?[1]

array = null

assert null == array?[1] // return null for all index values
array?[1] = 'c' // quietly ignore attempt to set value
assert null == array?[1]

def personInfo = [name: 'Daniel.Sun', location: 'Shanghai']

assert 'Daniel.Sun' == personInfo?['name'] // get using normal map index
personInfo?['name'] = 'sunlan' // set using normal map index

assert 'sunlan' == personInfo?['name']

personInfo = null

assert null == personInfo?['name'] // return null for all map values
personInfo?['name'] = 'sunlan’ // quietly ignore attempt to set value

assert null == personInfo?['name']

49

Membership operator

The membership operator (in) is equivalent to calling the isCase method. In the context of a List, it
is equivalent to calling contains, like in the following example:

def list = ['Grace', 'Rob"', "Emmy"']
assert ('Emmy' in list) ©)
assert ('Alex' !in list) @
® equivalent to calling list.contains('Emmy") or list.isCase('Emmy")

@ membership negation equivalent to calling !list.contains('Emmy"') or !list.isCase('Emmy")

Identity operator

In Groovy, using == to test equality is different from using the same operator in Java. In Groovy, it is
calling equals. If you want to compare reference equality, you should use is like in the following
example:

def 1list1 = ["Groovy 1.8",'Groovy 2.0', "Groovy 2.3"]
def list2 = ['Groovy 1.8"',"Groovy 2.0","'Groovy 2.3"]
assert list1 == Tlist2

assert !list1.is(list2)

assert 1list1 !== 1list2

GXCKCXOXS)

@ Create a list of strings

@ Create another list of strings containing the same elements

® using ==, we test object equality, equivalent to list1.equals(list2) in Java

@ using is, we can check that references are distinct, equivalent to 1ist1 == 1ist2 in Java

® using === or !== (supported and recommended since Groovy 3.0.0), we can also check whether
references are distinct or not, equivalent to 1ist1 == list2 and list1 != list2in Java

Coercion operator

The coercion operator (as) is a variant of casting. Coercion converts object from one type to another
without them being compatible for assignment. Let’s take an example:

String input = '42'
Integer num = (Integer) input ©)

@ String is not assignable to an Integer, so it will produce a ClassCastException at runtime

This can be fixed by using coercion instead:

String input = '42'
Integer num = input as Integer @®

50

@ String is not assignable to an Integer, but use of as will coerce it to an Integer

When an object is coerced into another, unless the target type is the same as the source type,
coercion will return a new object. The rules of coercion differ depending on the source and target
types, and coercion may fail if no conversion rules are found. Custom conversion rules may be
implemented thanks to the asType method:

class Identifiable {
String name

}
class User {
Long 1id
String name
def asType(Class target) { @
if (target == Identifiable) {
return new Identifiable(name: name)
}
throw new ClassCastException("User cannot be coerced into $target")
}
}
def u = new User(name: 'Xavier')
def p = u as Identifiable

assert p instanceof Identifiable
assert !(p instanceof User)

O®OE

@ the User class defines a custom conversion rule from User to Identifiable
@ we create an instance of User

® we coerce the User instance into an Identifiable

@ the target is an instance of Identifiable

® the target is not an instance of User anymore

Diamond operator

The diamond operator (<>) is a syntactic sugar only operator added to support compatibility with
the operator of the same name in Java 7. It is used to indicate that generic types should be inferred
from the declaration:

List<String> strings = new LinkedList<>()

In dynamic Groovy, this is totally unused. In statically type checked Groovy, it is also optional since
the Groovy type checker performs type inference whether this operator is present or not.

Call operator

The call operator () is used to call a method named call implicitly. For any object which defines a
call method, you can omit the .call part and use the call operator instead:

31

class MyCallable {

int call(int x) { ©)
2*x
}
}
def mc = new MyCallable()
assert mc.call(2) ==)
assert me(2) == 4 ®

@ MyCallable defines a method named call. Note that it doesn’t need to implement
java.util.concurrent.Callable

@ we can call the method using the classic method call syntax

® or we can omit .call thanks to the call operator

Operator precedence

The table below lists all groovy operators in order of precedence.

Level Operator(s) Name(s)
1 new () object creation, explicit
parentheses
O {3 [method call, closure, literal
list/map
& .0 member access, method

closure, field/attribute access

P safe dereferencing, spread,
spread-dot, spread-map

~ 1 (type) bitwise negate/pattern, not,
typecast
[1 ?2[] ++ -- list/map/array (safe) index, post
inc/decrement
2 o power
3 +' {nbsp} ‘--' {nbsp} * - pre inc/decrement, unary plus,

unary minus

4 * /% multiply, div, remainder
5 + - addition, subtraction
6 << >> >>>< <..< <. left/right (unsigned) shift,

inclusive/exclusive ranges

7 < <= > >= 1in !in instanceof less/greater than/or equal, in,
linstanceof as not in, instanceof, not
instanceof, type coercion

32

Level Operator(s) Name(s)

8 == |z <=> === == equals, not equals, compare to,
identical to, not identical to

=~ ==~ regex find, regex match
9 & binary/bitwise and
10 A binary/bitwise xor
11 | binary/bitwise or
12 && logical and
13 | logical or
13.5 ==> logical implication
14 [ternary conditional
7 elvis operator
15 = *= Fo [z %= 4= -= various assignments
L= >>= >>>= = N= |= 7=

Operator overloading

Groovy allows you to overload the various operators so that they can be used with your own
classes. Consider this simple class:

class Bucket {
int size

Bucket(int size) { this.size = size }

Bucket plus(Bucket other) { ©)
return new Bucket(this.size + other.size)

}

@ Bucket implements a special method called plus()

Just by implementing the plus() method, the Bucket class can now be used with the + operator like
so:

def b1 = new Bucket(4)
def b2 = new Bucket(11)
assert (b1 + b2).size == 15 D

@ The two Bucket objects can be added together with the + operator

All (non-comparator) Groovy operators have a corresponding method that you can implement in
your own classes. The only requirements are that your method is public, has the correct name, and

33

has the correct number of arguments. The argument types depend on what types you want to
support on the right hand side of the operator. For example, you could support the statement

assert (b1 + 11).size == 15

by implementing the plus() method with this signature:

Bucket plus(int capacity) {
return new Bucket(this.size + capacity)

}

Here is a complete list of the operators and their corresponding methods:

Operator Method Operator
+ a.plus(b) a[b]

- a.minus(b) a[b] = ¢
* a.multiply(b) ainb
/ a.div(b) «

% a.mod(b) >>

o a.power(b) >>>

| a.or(b) +H

& a.and(b) --

n a.xor(b) +a

as a.asType(b) -a

a() a.call() ~d

Program structure

Method
a.getAt(b)
a.putAt(b,)
b.isCase(a)
a.leftShift(b)
a.rightShift(b)
a.rightShiftUnsigned(b)
a.next()
a.previous()
a.positive()
a.negative()

a.bitwiseNegate()

This chapter covers the program structure of the Groovy programming language.

Package names

Package names play exactly the same role as in Java. They allow us to separate the code base
without any conflicts. Groovy classes must specify their package before the class definition, else the

default package is assumed.

Defining a package is very similar to Java:

// defining a package named com.yoursite
package com.yoursite

54

To refer to some class Foo in the com.yoursite.com package you will need to use the fully qualified
name com.yoursite.com.Foo, or else you can use an import statement as we’ll see below.

Imports

In order to refer to any class you need a qualified reference to its package. Groovy follows Java’s
notion of allowing import statement to resolve class references.

For example, Groovy provides several builder classes, such as MarkupBuilder. MarkupBuilder is inside
the package groovy.xml so in order to use this class, you need to import it as shown:

// importing the class MarkupBuilder
import groovy.xml.MarkupBuilder

// using the imported class to create an object
def xml = new MarkupBuilder()

assert xml !'= null

Default imports

Default imports are the imports that Groovy language provides by default. For example look at the
following code:

new Date()

The same code in Java needs an import statement to Date class like this: import java.util.Date.
Groovy by default imports these classes for you.

The below imports are added by groovy for you:

import java.lang.*

import java.util.*

import java.io.*

import java.net.*

import groovy.lang.*

import groovy.util.*

import java.math.BigInteger
import java.math.BigDecimal

This is done because the classes from these packages are most commonly used. By importing these
boilerplate code is reduced.

Simple import

A simple import is an import statement where you fully define the class name along with the
package. For example the import statement import groovy.xml.MarkupBuilder in the code below is a

55

simple import which directly refers to a class inside a package.

// importing the class MarkupBuilder
import groovy.xml.MarkupBuilder

// using the imported class to create an object
def xml = new MarkupBuilder()

assert xml != null

Star import

Groovy, like Java, provides a special way to import all classes from a package using *, the so-called
on-demand or star import. MarkupBuilder is a class which is in package groovy.xml, alongside
another class called StreamingMarkupBuilder. In case you need to use both classes, you can do:

import groovy.xml.MarkupBuilder
import groovy.xml.StreamingMarkupBuilder

def markupBuilder = new MarkupBuilder()
assert markupBuilder != null

assert new StreamingMarkupBuilder() != null

That’s perfectly valid code. But with a * import, we can achieve the same effect with just one line.
The star imports all the classes under package groovy.xml:

import groovy.xml.*
def markupBuilder = new MarkupBuilder()
assert markupBuilder != null

assert new StreamingMarkupBuilder() != null

One problem with * imports is that they can clutter your local namespace. But with the kinds of
aliasing provided by Groovy, this can be solved easily.

Static import

Groovy’s static import capability allows you to reference imported classes as if they were static
methods in your own class:

import static java.lang.Boolean.FALSE

36

assert !FALSE //use directly, without Boolean prefix!

This is similar to Java’s static import capability but is a more dynamic than Java in that it allows
you to define methods with the same name as an imported method as long as you have different

types:

import static java.lang.String.format @
class SomeClass {

String format(Integer i) { @
i.toString()
}

static void main(String[] args) {
assert format('String') == 'String' ®
assert new SomeClass().format(Integer.value0f(1)) == "1

@ static import of method

@ declaration of method with same name as method statically imported above, but with a
different parameter type

® compile error in Java, but is valid Groovy code

If you have the same signature, the imported method takes precedence.

Static import aliasing

Static imports with the as keyword provide an elegant solution to namespace problems. Suppose
you want to get a Calendar instance, using its getInstance() method. It’s a static method, so we can
use a static import. But instead of calling getInstance() every time, which can be misleading when
separated from its class name, we can import it with an alias, to increase code readability:

import static Calendar.getInstance as now

assert now().class == Calendar.getInstance().class

Now, that’s clean!

Static star import

A static star import is very similar to the regular star import. It will import all the static members
from the given class.

For example, let’s say we need to calculate sines and cosines for our application. The class
java.lang.Math has static methods named sin and cos which fit our need. With the help of a static

57

star import, we can do:

import static java.lang.Math.*

assert sin(@) == 0.0
assert cos(0) == 1.0

As you can see, we were able to access the methods sin and cos directly, without the Math. prefix.

Import aliasing

With type aliasing, we can refer to a fully qualified class name using a name of our choice. This can
be done with the as keyword, as before.

For example we can import java.sql.Date as SQLDate and use it in the same file as java.util.Date

without having to use the fully qualified name of either class:

import java.util.Date
import java.sql.Date as SQLDate

Date utilDate = new Date(1000L)
SQLDate sqlDate = new SQLDate(1000L)

assert utilDate instanceof java.util.Date
assert sqlDate instanceof java.sql.Date

Namespace conflicts

Similar to Java, it is an error in Groovy to specify multiple imports with the same name but
different types:

import java.awt.list
import java.util.List // error: name already declared

And to declare an import and a top-level type with the same name:

import java.util.List
class List { } // error: name already declared

However, inner types can shadow names from the unit scope:

import java.util.list
class Main {

class List { } // allowed; "List" refers to this type within ‘Main''s scope and
‘java.util.List' elsewhere

38

Scripts versus classes

Groovy supports both scripts and classes. From Groovy 5, Groovy also supports JEP 445 compatible
scripts.

Motivation for scripts
Take the following code for example:

Main.groovy

class Main {
static void main(String... args) {
println 'Groovy world!"'

@O O

}

@ define a Main class, the name is arbitrary
@ the public static void main(String[]) method is usable as the main method of the class

® the main body of the method

This is typical code that you would find coming from Java, where code has to be embedded into a
class to be executable. Groovy makes it easier, the following code is equivalent:

Main.groovy

println 'Groovy world!'

A script can be considered as a class without needing to explicitly declare it. There are some
differences which we’ll cover next. First, we’ll cover Groovy’s main Script class. Then, we’ll cover
JEP 445 compatible classes.

Script class

A groovylang.Script is always compiled into a class. The Groovy compiler will compile the class for
you, with the body of the script copied into a run method. The previous example is therefore
compiled as if it was the following:

Main.groovy

import org.codehaus.groovy.runtime.InvokerHelper
class Main extends Script {
def run() {
println 'Groovy world!'
}
static void main(String[] args) {
InvokerHelper.runScript(Main, args)

©O® 006

39

https://openjdk.org/jeps/445
https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?groovy/lang/Script.html

@ The Main class extends the groovy.lang.Script class

@ groovy.lang.Script requires a run method returning a value

® the script body goes into the run method

@ the main method is automatically generated

® and delegates the execution of the script on the run method

If the script is in a file, then the base name of the file is used to determine the name of the

generated script class. In this example, if the name of the file is Main.groovy, then the script class is
going to be Main.

Methods
It is possible to define methods into a script, as illustrated here:
int fib(int n) {
n<27?1: fib(n-1) + fib(n-2)

}
assert fib(10)==89

You can also mix methods and code. The generated script class will carry all methods into the script
class, and assemble all script bodies into the run method:

println 'Hello'

int power(int n) { 2**n }

println "276==${power(6)}"
@ script begins

@ a method is defined within the script body
® and script continues
Statements 1 and 3 are sometimes referred to as "loose" statements. They are not contained within

an explicit enclosing method or class. Loose statements are assembled sequentially into the run
method.

So, the above code is internally converted into:
import org.codehaus.groovy.runtime.InvokerHelper
class Main extends Script {

int power(int n) { 2** n} @
def run() {

60

println 'Hello'
println "276==${power(6)}"

XS

}
static void main(String[] args) {
InvokerHelper.runScript(Main, args)

}

@ the power method is copied as-is into the generated script class
@ first statement is copied into the run method

® second statement is copied into the run method

Even if Groovy creates a class from your script, it is totally transparent for the user. In
particular, scripts are compiled to bytecode, and line numbers are preserved. This

TIP implies that if an exception is thrown in a script, the stack trace will show line
numbers corresponding to the original script, not the generated code that we have
shown.

Variables

Variables in a script do not require a type definition. This means that this script:

int x =1
inty=2
assert x+y ==

will behave the same as:

x =1
y =2
assert x+y ==

However, there is a semantic difference between the two:

« if the variable is declared as in the first example, it is a local variable. It will be declared in the
run method that the compiler will generate and will not be visible outside of the script main
body. In particular, such a variable will not be visible in other methods of the script

« if the variable is undeclared, it goes into the groovy.lang.Script#getBinding(). The binding is
visible from the methods, and is especially important if you use a script to interact with an
application and need to share data between the script and the application. Readers might refer
to the integration guide for more information.

Another approach to making a variable visible to all methods, is to use the @Field
annotation. A variable annotated this way will become a field of the generated script
class and, as for local variables, access won’t involve the script Binding. If you have a
local variable or script field with the same name as a binding variable, we recommend

TIP

61

https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?groovy/lang/Script.html#getBinding()

renaming one of them to avoid potential confusion. If that’s not possible, you can use
binding.varName to access the binding variable.

Convenience variations

As mentioned previously, normally, public static void main and run methods are automatically
added to your script, so it is normally illegal to add your own versions of either of those; you would
see a duplicate method compiler error if you tried.

However, there are some exceptions where the above rules don’t apply. If your script contains only
a compatible main method and no other loose statements, or only a no-arg run instance method
(from Groovy 5), then it is allowed. In this case, no loose statements (because there aren’t any) are
collected into the run method. The method you supplied is used instead of Groovy adding the
respective method(s).

This can be useful if you need to add an annotation to the otherwise implicitly added main or run
methods as this example shows:

@CompileStatic
static main(args) {
println 'Groovy world!'

}

To be recognised as a convenience variation, as well as having no loose statements, the parameter
for the main method should be:

* untyped as above (Object type),
* or of type String[],
 or have no arguments (from Groovy 5).
From Groovy 5, a no-arg instance run variant is also supported. This also allows annotations to be

added. The run variant follows the JEP 445 rules for field declarations (hence doesn’t need to use the
@Field annotation) as this example involving Jackson JSON serialization shows:

@JsonIgnoreProperties(["binding"])
def run() {
var mapper = new ObjectMapper()
assert mapper.writeValueAsString(this) == '{"pets":["cat","dog"]}'

public pets = ['cat', 'dog']

The run variant is recommended if you need your script to extend the Script class and have access
to the script context and bindings. If you don’t have that requirement, providing one of the main
variants will create a JEP 445 compatible class which won’t extend Script. We’ll cover JEP 445
compatible scripts in more detail next.

62

JEP 445 compatible scripts

From Groovy 5, support has been added for JEP 445 compatible scripts containing a main method.
Such scripts have several differences to normal Groovy Script classes:
* they won’t have a public static void main method added

* they won’t extend the Script class and hence won’t have access to the script context or binding
variables

+ allows additional class-level fields and methods to be defined in addition to main

» can’t have "loose" statements outside the main method (excluding any field definitions)

A simple example might look like:

void main(args) {
println new Date()
}

An example with additional fields and methods might look like:

def main() {
assert upper(foo) + lower(bar) == 'FOObar'

}

def upper(s) { s.toUpperCase() }

def lower = String::tolLowerCase
def (foo, bar) = ['Foo', 'Bar'] @)

@ Note that multi-assignment syntax is supported and results in separate field definitions for each
component.

Differences with Java JEP 445 behavior

There are some differences with Groovy’s JEP 445 support and that offered by Java:

* Java supports either a no-arg main method or one containing a single String[] parameter.
Groovy also adds support for a single untyped (Object) parameter, e.g. def main(args) { -+ }.
This addition is known by the Groovy runner but would not be known by the Java launch
protocol for a JDK supporting JEP 445.

* Java supports void main methods. Groovy also adds support for untyped def (Object) methods,
e.g. def main(---) as well as void main(::-). This addition is known by the Groovy runner but
would not be known by the Java launch protocol for a JDK supporting JEP 445.

 For static main variants, Groovy promotes the no-arg or untyped variants to have the standard
public static void main(String[] args) signature. This is for compatibility with versions of
Groovy prior to Groovy 5 (where JEP 445 support was added). As a consequence, such classes
are compatible with the Java launch protocol prior to JEP 445 support.

63

* Groovy’s runner has been made aware of JEP 445 compatible classes and can run all variations
for JDK11 and above and without the need for preview mode to be enabled.

Object orientation

This chapter covers the object-oriented aspects of the Groovy programming language.

Types

Primitive types

Groovy supports the same primitive types as defined by the Java Language Specification:

integral types: byte (8 bit), short (16 bit), int (32 bit) and long (64 bit)
+ floating-point types: float (32 bit) and double (64 bit)

the boolean type (one of true or false)

the char type (16 bit, usable as a numeric type, representing a UTF-16 code)

Also like Java, Groovy uses the respective wrapper classes when objects corresponding to any of the
primitive types are required:

Table 4. primitive wrappers

Primitive type Wrapper class
boolean Boolean

char Character
short Short

int Integer

long Long

float Float

double Double

Automatic boxing and unboxing occur when, for instance, calling a method requiring the wrapper
class and passing it a primitive variable as the parameter, or vice-versa. This is similar to Java but
Groovy takes the idea further.

In most scenarios, you can treat a primitive just like it was the full object wrapper equivalent. For
instance, you can call .toString() or .equals(other) on a primitive. Groovy autowraps and unwraps
between references and primitives as needed.

Here’s an example using int which is declared as a static field in a class (discussed shortly):

class Foo {
static int i

64

https://docs.oracle.com/javase/specs/jls/se14/html/

assert Foo.class.getDeclaredField('i').type == int.class ©)
assert Foo.i.class != int.class && Foo.i.class == Integer.class @)

@ Primitive type is respected in the bytecode

@ Looking at the field at runtime shows it has been autowrapped

Now you may be concerned that this means every time you use a mathematical operator on a
reference to a primitive that you’ll incur the cost of unboxing and reboxing the primitive. But this is
not the case, as Groovy will compile your operators into their method equivalents and uses those
instead. Additionally, Groovy will automatically unbox to a primitive when calling a Java method

that takes a primitive parameter and automatically box primitive method return values from Java.
However, be aware there are some differences from Java’s method resolution.

Reference Types

Apart from primitives, everything else is an object and has an associated class defining its type.
We’ll discuss classes, and class-related or class-like things like interfaces, traits and records shortly.

We might declare two variables, of type String and List, as follows:

String movie = 'The Matrix'
List actors = ['Keanu Reeves', 'Hugo Weaving']

Generics

Groovy carries across the same concepts with regard to generics as Java. When defining classes and
methods, it is possible to use a type parameter and create a generic class, interface, method or
constructor.

Usage of generic classes and methods, regardless of whether they are defined in Java or Groovy,
may involve supplying a type argument.

We might declare a variable, of type "list of string”, as follows:

List<String> roles = ['Trinity', 'Morpheus’]

Java employs type erasure for backwards compatibility with earlier versions of Java. Dynamic
Groovy can be thought of as more aggressively applying type erasure. In general, less generics type
information will be checked at compile time. Groovy’s static nature employs similar checks to Java
with regard to generics information.

Classes

Groovy classes are very similar to Java classes, and are compatible with Java ones at JVM level.
They may have methods, fields and properties (think JavaBeans properties but with less
boilerplate). Classes and class members can have the same modifiers (public, protected, private,

65

core-operators.html#_operator-overloading
core-differences-java.html#_primitives_and_wrappers

static, etc.) as in Java with some minor differences at the source level which are explained shortly.
The key differences between Groovy classes and their Java counterparts are:
* Classes or methods with no visibility modifier are automatically public (a special annotation can

be used to achieve package private visibility).

* Fields with no visibility modifier are turned into properties automatically, which results in less
verbose code, since explicit getter and setter methods aren’t needed. More on this aspect will be
covered in the fields and properties section.

* Classes do not need to have the same base name as their source file definitions but it is highly
recommended in most scenarios (see also the next point about scripts).

* One source file may contain one or more classes (but if a file contains any code not in a class, it
is considered a script). Scripts are just classes with some special conventions and will have the
same name as their source file (so don’t include a class definition within a script having the
same name as the script source file).

The following code presents an example class.

class Person {

String name @
Integer age

def increaseAge(Integer years) { ®
this.age += years

@ class beginning, with the name Person
@ string field and property named name

® method definition

Normal class

Normal classes refer to classes which are top level and concrete. This means they can be
instantiated without restrictions from any other classes or scripts. This way, they can only be public

(even though the public keyword may be suppressed). Classes are instantiated by calling their

constructors, using the new keyword, as in the following snippet.

def p = new Person()

Inner class

Inner classes are defined within another classes. The enclosing class can use the inner class as
usual. On the other side, an inner class can access members of its enclosing class, even if they are
private. Classes other than the enclosing class are not allowed to access inner classes. Here is an

66

example:

class Outer {
private String privateStr

def callInnerMethod() {

new Inner().methodA() ©)
}
class Inner { @
def methodA() {
println "${privateStr}." @
}
}

@ the inner class is instantiated and its method gets called
@ inner class definition, inside its enclosing class
® even being private, a field of the enclosing class is accessed by the inner class
There are some reasons for using inner classes:
* They increase encapsulation by hiding the inner class from other classes, which do not need to
know about it. This also leads to cleaner packages and workspaces.
» They provide a good organization, by grouping classes that are used by only one class.
* They lead to more maintainable codes, since inner classes are near the classes that use them.
It is common for an inner class to be an implementation of some interface whose method(s) are

needed by the outer class. The code below illustrates this typical usage pattern, here being used
with threads.

class Outer2 {
private String privateStr = 'some string’

def startThread() {
new Thread(new Inner2()).start()
}

class Inner2 implements Runnable {
void run() {
println "${privateStr}."
}

Note that the class Inner2 is defined only to provide an implementation of the method run to class
Outer2. Anonymous inner classes help to eliminate verbosity in this case. That topic is covered

67

shortly.

Groovy 3+ also supports Java syntax for non-static inner class instantiation, for example:

class Computer {
class Cpu {
int coreNumber

Cpu(int coreNumber) {
this.coreNumber = coreNumber

}

assert 4 == new Computer().new Cpu(4).coreNumber

Anonymous inner class

The earlier example of an inner class (Inner2) can be simplified with an anonymous inner class. The
same functionality can be achieved with the following code:

class Outer3 {
private String privateStr = 'some string’

def startThread() {
new Thread(new Runnable() { ®
void run() {
println "${privateStr}."

+
1) .start() @

® comparing with the last example of previous section, the new Inner2() was replaced by new
Runnable() along with all its implementation

@ the method start is invoked normally
Thus, there was no need to define a new class to be used just once.

Abstract class

Abstract classes represent generic concepts, thus, they cannot be instantiated, being created to be
subclassed. Their members include fields/properties and abstract or concrete methods. Abstract
methods do not have implementation, and must be implemented by concrete subclasses.

abstract class Abstract { ©)
String name

68

abstract def abstractMethod() @

def concreteMethod() {
println 'concrete’

@ abstract classes must be declared with abstract keyword

@ abstract methods must also be declared with abstract keyword

Abstract classes are commonly compared to interfaces. There are at least two important differences
of choosing one or another. First, while abstract classes may contain fields/properties and concrete

methods, interfaces may contain only abstract methods (method signatures). Moreover, one class
can implement several interfaces, whereas it can extend just one class, abstract or not.

Inheritance

Inheritance in Groovy resembles inheritance in Java. It provides a mechanism for a child class (or
subclass) to reuse code or properties from a parent (or super class). Classes related through
inheritance form an inheritance hierarchy. Common behavior and members are pushed up the
hierarchy to reduce duplication. Specializations occur in child classes.

Different forms of inheritance are supported:

» implementation inheritance where code (methods, fields or properties) from a superclass or
from one or more traits is reused by a child class

* contract inheritance where a class promises to provide particular abstract methods defined in a
superclass, or defined in one or more traits or interfaces.

Superclasses

Parent classes share visible fields, properties or methods with child classes. A child class may have
at most one parent class. The extends keyword is used immediately prior to giving the superclass

type.

Interfaces

An interface defines a contract that a class needs to conform to. Typically, an interface defines zero
or more abstract method definitions, but does not define the method’s implementation.

Here is a Greeter interface defining one greet method:

interface Greeter {
void greet(String name)

XS

@ an interface needs to be declared using the interface keyword

@ the abstract method signature for the greet method

69

Such method signatures are public by default. It is an error to use protected or package-private
methods in interfaces:

interface Greeter {
protected void greet(String name) @

@ Using protected is a compile-time error

A class implements an interface if it defines the interface in its implements list or if any of its
superclasses does:

class SystemGreeter implements Greeter { O
void greet(String name) { @
println "Hello $name"
}
}
def greeter = new SystemGreeter()
assert greeter instanceof Greeter ©)

@ The SystemGreeter declares the Greeter interface using the implements keyword
@ Then implements the required greet method

® Any instance of SystemGreeter is also an instance of the Greeter interface

An interface can extend another interface:

interface ExtendedGreeter extends Greeter { ©)
void sayBye(String name)

@ the ExtendedGreeter interface extends the Greeter interface using the extends keyword

It is worth noting that for a class to be an instance of an interface, it has to be explicit. For example,
the following class defines the greet method as it is declared in the Greeter interface, but does not
declare Greeter in its interfaces:

class DefaultGreeter {
void greet(String name) { println "Hello" }

greeter = new DefaultGreeter()
assert !(greeter instanceof Greeter)

In other words, Groovy does not define structural typing. It is however possible to make an instance
of an object implement an interface at runtime, using the as coercion operator:

70

greeter = new DefaultGreeter()
coerced = greeter as Greeter
assert coerced instanceof Greeter

@O

@ create an instance of DefaultGreeter that does not implement the interface

@ coerce the instance into a Greeter at runtime

® the coerced instance implements the Greeter interface

You can see that there are two distinct objects: one is the source object, a DefaultGreeter instance,

which does not implement the interface. The other is an instance of Greeter that delegates to the
coerced object.

Groovy traits are close to interfaces, but support other important features described
TIP elsewhere in this manual. If you need more power than offered by interfaces, consider
using traits.

While interfaces typically contain abstract method definitions, non-abstract methods are also
possible. Variants allowed are default, static, or private:

* Default methods provide a mechanism to evolve API functionality. You can add new
functionality to existing interfaces but maintain binary compatibility with code written for
older versions of those interfaces. Shared functionality for default methods may be placed in
private methods.

« Static methods provide a mechanism to associate methods directly an interface class without it
impacting the OO contracts or being overridden. You could use them for writing factory or
utility methods without creating an additional utility class.

Class members

Constructors

Constructors are special methods used to initialize an object with a specific state. As with normal
methods, it is possible for a class to declare more than one constructor, so long as each constructor
has a unique type signature. If an object doesn’t require any parameters during construction, it
may use a no-arg constructor. If no constructors are supplied, an empty no-arg constructor will be
provided by the Groovy compiler.

Groovy supports two invocation styles:

* positional parameters are used in a similar to how you would use Java constructors

* named parameters allow you to specify parameter names when invoking the constructor.

Positional parameters

To create an object by using positional parameters, the respective class needs to declare one or
more constructors. In the case of multiple constructors, each must have a unique type signature.
The constructors can also be added to the class using the groovy.transform.TupleConstructor

71

https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?groovy/transform/TupleConstructor.html

annotation.

Typically, once at least one constructor is declared, the class can only be instantiated by having one
of its constructors called. It is worth noting that, in this case, you can’t normally create the class
with named parameters. Groovy does support named parameters so long as the class contains a no-
arg constructor or provides a constructor which takes a Map argument as the first (and potentially
only) argument - see the next section for details.

There are three forms of using a declared constructor. The first one is the normal Java way, with
the new keyword. The others rely on coercion of lists into the desired types. In this case, it is possible
to coerce with the as keyword and by statically typing the variable.

class PersonConstructor {
String name
Integer age

PersonConstructor(name, age) { @
this.name = name
this.age = age

def person1 = new PersonConstructor('Marie', 1) @
def person2 = ['Marie', 2] as PersonConstructor ®
PersonConstructor person3 = ['Marie', 3] @

@ Constructor declaration
@ Constructor invocation, classic Java way
® Constructor usage, using coercion with as keyword

@ Constructor usage, using coercion in assignment

Named parameters

If no (or a no-arg) constructor is declared, it is possible to create objects by passing parameters in
the form of a map (property/value pairs). This can be in handy in cases where one wants to allow
several combinations of parameters. Otherwise, by using traditional positional parameters it would
be necessary to declare all possible constructors. Having a constructor where the first (and perhaps
only) argument is a Map argument is also supported - such a constructor may also be added using
the groovy.transform.MapConstructor annotation.

class PersonWOConstructor { O)
String name
Integer age

def person4 = new PersonWOConstructor()
def person5 = new PersonWOConstructor(name: 'Marie')
def personb = new PersonWOConstructor(age: 1)

®OE

72

https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?groovy/transform/MapConstructor.html

def person7 = new PersonWOConstructor(name: 'Marie’, age: 2) ®

@ No constructor declared

@ No parameters given in the instantiation

® name parameter given in the instantiation

@ age parameter given in the instantiation

® name and age parameters given in the instantiation

It is important to highlight, however, that this approach gives more power to the constructor caller,
while imposing an increased responsibility on the caller to get the names and value types correct.

Thus, if greater control is desired, declaring constructors using positional parameters might be
preferred.

Notes:

* While the example above supplied no constructor, you can also supply a no-arg constructor or a
constructor where the first argument is a Map, most typically it’s the only argument.

* When no (or a no-arg) constructor is declared, Groovy replaces the named constructor call by a
call to the no-arg constructor followed by calls to the setter for each supplied named property.

* When the first argument is a Map, Groovy combines all named parameters into a Map
(regardless of ordering) and supplies the map as the first parameter. This can be a good
approach if your properties are declared as final (since they will be set in the constructor
rather than after the fact with setters).

* You can support both named and positional construction by supply both positional constructors
as well as a no-arg or Map constructor.

* You can support hybrid construction by having a constructor where the first argument is a Map
but there are also additional positional parameters. Use this style with caution.

Methods

Groovy methods are quite similar to other languages. Some peculiarities will be shown in the next
subsections.

Method definition

A method is defined with a return type or with the def keyword, to make the return type untyped. A
method can also receive any number of arguments, which may not have their types explicitly
declared. Java modifiers can be used normally, and if no visibility modifier is provided, the method
is public.

Methods in Groovy always return some value. If no return statement is provided, the value
evaluated in the last line executed will be returned. For instance, note that none of the following
methods uses the return keyword.

def someMethod() { 'method called' }
String anotherMethod() { 'another method called' }

® O

73

def thirdMethod(paraml1) { "$paraml passed" } ®
static String fourthMethod(String param1) { "$paraml passed" } @

@ Method with no return type declared and no parameter
@ Method with explicit return type and no parameter
® Method with a parameter with no type defined

@ Static method with a String parameter

Named parameters

Like constructors, normal methods can also be called with named parameters. To support this
notation, a convention is used where the first argument to the method is a Map. In the method body,
the parameter values can be accessed as in normal maps (map.key). If the method has just a single
Map argument, all supplied parameters must be named.

def foo(Map args) { "${args.name}: ${args.age}" }
foo(name: 'Marie', age: 1)

Mixing named and positional parameters

Named parameters can be mixed with positional parameters. The same convention applies, in this
case, in addition to the Map argument as the first argument, the method in question will have
additional positional arguments as needed. Supplied positional parameters when calling the
method must be in order. The named parameters can be in any position. They are grouped into the
map and supplied as the first parameter automatically.

def foo(Map args, Integer number) { "${args.name}: ${args.age}, and the number is
${number}" }

foo(name: 'Marie', age: 1, 23) @

foo(23, name: 'Marie', age: 1) @

@ Method call with additional number argument of Integer type

@ Method call with changed order of arguments

If we don’t have the Map as the first argument, then a Map must be supplied for that argument
instead of named parameters. Failure to do so will lead to groovy.lang.MissingMethodException:

def foo(Integer number, Map args) { "${args.name}: ${args.age}, and the number is
${number}" }
foo(name: 'Marie', age: 1, 23) @

® Method call throws groovy.lang.MissingMethodException: No signature of method: foo() is

applicable for argument types: (LinkedHashMap, Integer) values: [[name:Marie, age:1], 23],
because the named argument Map parameter is not defined as the first argument

Above exception can be avoided if we replace named arguments with an explicit Map argument:

74

def foo(Integer number, Map args) { "${args.name}: ${args.age}, and the number is
${number}" }
foo(23, [name: 'Marie', age: 1]) @®

@ Explicit Map argument in place of named arguments makes invocation valid

Although Groovy allows you to mix named and positional parameters, it can lead to

TIP . . o . .
unnecessary confusion. Mix named and positional arguments with caution.

Default arguments

Default arguments make parameters optional. If the argument is not supplied, the method assumes
a default value.

def foo(String par1, Integer par2 = 1) { [name: par1, age: par2] }
assert foo('Marie').age ==

Parameters are dropped from the right, however mandatory parameters are never dropped.

def baz(a = 'a', int b, ¢ = 'c¢', boolean d, e = 'e') { "$a $b $c $d $e" }

assert baz(42, true) == 'a 42 c true e'

assert baz('A', 42, true) == 'A 42 c true e'

assert baz('A', 42, 'C', true) == 'A 42 C true e'
assert baz('A', 42, 'C', true, 'E') == 'A 42 C true E'

The same rule applies to constructors as well as methods. If using @TupleConstructor, additional
configuration options apply.

Varargs

Groovy supports methods with a variable number of arguments. They are defined like this: def
foo(p1, -+, pn, T+ args). Here foo supports n arguments by default, but also an unspecified
number of further arguments exceeding n.

def foo(Object... args) { args.length }
assert foo() ==

assert foo(1) ==

assert foo(1, 2) ==

This example defines a method foo, that can take any number of arguments, including no
arguments at all. args.length will return the number of arguments given. Groovy allows T[] as an
alternative notation to T---. That means any method with an array as last parameter is seen by
Groovy as a method that can take a variable number of arguments.

75

def foo(Object[] args) { args.length }
assert foo() ==

assert foo(1) ==

assert foo(1, 2) ==

If a method with varargs is called with null as the vararg parameter, then the argument will be null
and not an array of length one with null as the only element.

def foo(Object... args) { args }
assert foo(null) == null

If a varargs method is called with an array as an argument, then the argument will be that array
instead of an array of length one containing the given array as the only element.

def foo(Object... args) { args }
Integer[] ints = [1, 2]
assert foo(ints) == [1, 2]

Another important point are varargs in combination with method overloading. In case of method
overloading Groovy will select the most specific method. For example if a method foo takes a
varargs argument of type T and another method foo also takes one argument of type T, the second
method is preferred.

def foo(Object... args) { 1}
def foo(Object x) { 2 }
assert foo() ==

assert foo(1) ==

assert foo(1, 2) ==

Method selection algorithm

Dynamic Groovy supports multiple dispatch (aka multimethods). When calling a method, the actual
method invoked is determined dynamically based on the run-time type of methods arguments. First
the method name and number of arguments will be considered (including allowance for varargs),
and then the type of each argument. Consider the following method definitions:

def method(Object o1, Object 02) { 'o/0" }
def method(Integer i, String s) { "i/s' }
def method(String s, Integer i) { 's/i' }

Perhaps as expected, calling method with String and Integer parameters, invokes our third method
definition.

76

https://en.wikipedia.org/wiki/Multiple_dispatch

assert method('foo', 42) == 's/i'

Of more interest here is when the types are not known at compile time. Perhaps the arguments are
declared to be of type Object (a list of such objects in our case). Java would determine that the
method(Object, Object) variant would be selected in all cases (unless casts were used) but as can be
seen in the following example, Groovy uses the runtime type and will invoke each of our methods
once (and normally, no casting is needed):

List<List<Object>> pairs = [['foo", 1], [2, 'bar'], [3, 4]]
assert pairs.collect { a, b -> method(a, b) } == ['s/i"', "i/s', 'o0/0']

For each of the first two of our three method invocations an exact match of argument types was
found. For the third invocation, an exact match of method(Integer, Integer) wasn’t found but
method(Object, Object) is still valid and will be selected.

Method selection then is about finding the closest fit from valid method candidates which have
compatible parameter types. So, method(Object, Object) is also valid for the first two invocations
but is not as close a match as the variants where types exactly match. To determine the closest fit,
the runtime has a notion of the distance an actual argument type is away from the declared
parameter type and tries to minimise the total distance across all parameters.

The following table illustrates some factors which affect the distance calculation.

Aspect Example

Directly implemented interfaces match more Given these interface and method definitions:
closely than ones from further up the

inheritance hierarchy. e

interface I2 extends I1 {}
interface I3 {}
class Clazz implements I3, I2 {}

def method(I1 i1) { 'IT1' }
def method(I3 i3) { 'I3' }

The directly implemented interface will match:

assert method(new Clazz()) == 'I3'

An Object array is preferred over an Object.
def method(Object[] arg) { 'array' }

def method(Object arg) { 'object' }

assert method([] as Object[]) == 'array’

77

Aspect

Non-vararg variants are favored over vararg
variants.

If two vararg variants are applicable, the one
which uses the minimum number of vararg
arguments is preferred.

Interfaces are preferred over super classes.

For a primitive argument type, a declared
parameter type which is the same or slightly
larger is preferred.

Example

def method(String s, Object... vargs) {
'vararg' }
def method(String s) { 'non-vararg' }

assert method('foo') == 'non-vararg'

def method(String s, Object... vargs) {
"two vargs' }

def method(String s, Integer 1,
Object... vargs) { 'one varg' }

assert method('foo', 35, new Date()) ==
"one varg'

interface I {}
class Base {}
class Child extends Base implements I {}

def method(Base b) { 'superclass' }
def method(I i) { 'interface' }

assert method(new Child()) ==
"interface’

def method(Long 1) { 'Long' }

def method(Short s) { 'Short' }

def method(BigInteger bi) { 'BigInteger’
}

assert method(35) == 'Long'

In the case where two variants have exactly the same distance, this is deemed ambiguous and will

cause a runtime exception:

def method(Date d, Object o) { 'd/o' }

def method(Object o, String s) { 'o/s' }

def ex = shouldFail {
println method(new Date(), 'baz')

}

assert ex.message.contains('Ambiguous method overloading')

Casting can be used to select the desired method:

78

assert method(new Date(), (Object)'baz') == 'd/o'
assert method((Object)new Date(), 'baz') == 'o/s'

Exception declaration

Groovy automatically allows you to treat checked exceptions like unchecked exceptions. This
means that you don’t need to declare any checked exceptions that a method may throw as shown in
the following example which can throw a FileNotFoundException if the file isn’t found:

def badRead() {
new File('doesNotExist.txt').text
}

shouldFail(FileNotFoundException) {
badRead()
}

Nor will you be required to surround the call to the badRead method in the previous example within
a try/catch block - though you are free to do so if you wish.

If you wish to declare any exceptions that your code might throw (checked or otherwise) you are
free to do so. Adding exceptions won’t change how the code is used from any other Groovy code but
can be seen as documentation for the human reader of your code. The exceptions will become part
of the method declaration in the bytecode, so if your code might be called from Java, it might be
useful to include them. Using an explicit checked exception declaration is illustrated in the
following example:

def badRead() throws FileNotFoundException {
new File('doesNotExist.txt').text

}

shouldFail(FileNotFoundException) {
badRead()
+

Fields and Properties

Fields

A field is a member of a class, interface or trait which stores data. A field defined in a Groovy
source file has:

* a mandatory access modifier (public, protected, or private)

* one or more optional modifiers (static, final, synchronized)

* an optional type

* a mandatory name

79

class Data {
private int id
protected String description
public static final boolean DEBUG = false

CXSXS

® a private field named id, of type int
@ a protected field named description, of type String
® apublic static final field named DEBUG of type boolean

A field may be initialized directly at declaration:

class Data {
private String id = IDGenerator.next() @
/] ...

@ the private field id is initialized with IDGenerator.next()

It is possible to omit the type declaration of a field. This is however considered a bad practice and in
general it is a good idea to use strong typing for fields:

class BadPractice {

private mapping @
}
class GoodPractice {

private Map<String,String> mapping @)
}

@ the field mapping doesn’t declare a type
@ the field mapping has a strong type
The difference between the two is important if you want to use optional type checking later. It is

also important as a way to document the class design. However, in some cases like scripting or if
you want to rely on duck typing it may be useful to omit the type.

Properties

A property is an externally visible feature of a class. Rather than just using a public field to
represent such features (which provides a more limited abstraction and would restrict refactoring
possibilities), the typical approach in Java is to follow the conventions outlined in the JavaBeans
Specification, i.e. represent the property using a combination of a private backing field and
getters/setters. Groovy follows these same conventions but provides a simpler way to define the
property. You can define a property with:

* an absent access modifier (no public, protected or private)

* one or more optional modifiers (static, final, synchronized)

80

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

* an optional type

* a mandatory name

Groovy will then generate the getters/setters appropriately. For example:

class Person {
String name ©)
int age @

@ creates a backing private String name field, a getName and a setName method

@ creates a backing private int age field, a getAge and a setAge method

If a property is declared final, no setter is generated:

class Person {
final String name
final int age
Person(String name, int age) {
this.name = name
this.age = age

®O@ ©O6

@ defines a read-only property of type String
@ defines a read-only property of type int

® assigns the name parameter to the name field
@ assigns the age parameter to the age field

Properties are accessed by name and will call the getter or setter transparently, unless the code is in
the class which defines the property:

class Person {
String name
void name(String name) {

this.name = "Wonder $name" ©)
}
String title() {

this.name @)
}

}

def p = new Person()

p.name = 'Diana’ ©)
assert p.name == 'Diana’ @
p.name('Woman') ®
assert p.title() == 'Wonder Woman' ®

81

@ this.name will directly access the field because the property is accessed from within the class
that defines it

@ similarly a read access is done directly on the name field

® write access to the property is done outside of the Person class so it will implicitly call setName
@ read access to the property is done outside of the Person class so it will implicitly call getName
® this will call the name method on Person which performs a direct access to the field

® this will call the title method on Person which performs a direct read access to the field

It is worth noting that this behavior of accessing the backing field directly is done in order to
prevent a stack overflow when using the property access syntax within a class that defines the

property.

It is possible to list the properties of a class thanks to the meta properties field of an instance:

class Person {
String name
int age
}
def p = new Person()
assert p.properties.keySet().containsALL(['name', 'age'])

By convention, Groovy will recognize properties even if there is no backing field provided there are
getters or setters that follow the Java Beans specification. For example:

class PseudoProperties {
// a pseudo property "name"
void setName(String name) {}
String getName() {}

// a pseudo read-only property "age"

int getAge() { 42 }

// a pseudo write-only property "groovy"
void setGroovy(boolean groovy) { }

}

def p = new PseudoProperties()

p.name = 'Foo'

assert p.age == 42

p.groovy = true

CXSXS)

@ writing p.name is allowed because there is a pseudo-property name
@ reading p.age is allowed because there is a pseudo-readonly property age

® writing p.groovy is allowed because there is a pseudo-write-only property groovy

This syntactic sugar is at the core of many DSLs written in Groovy.

82

Property naming conventions

It is generally recommended that the first two letters of a property name are lowercase and for
multi-word properties that camel case is used. In those cases, generated getters and setters will
have a name formed by capitalizing the property name and adding a get or set prefix (or optionally
"is" for a boolean getter). So, getLength would be a getter for a length property and setFirstName a
setter for a firstName property. isEmpty might be the getter method name for a property named
empty.

Property names starting with a capital letter would have getters/setters with just the
prefix added. So, the property Foo is allowed even though it isn’t following the
NOTE recommended naming conventions. For this property, the accessor methods would
be setFoo and getFoo. A consequence of this is that you aren’t allowed to have both a
foo and a Foo property, since they would have the same named accessor methods.

The JavaBeans specification makes a special case for properties which typically might be acronym:s.
If the first two letters of a property name are uppercase, no capitalization is performed (or more
importantly, no decapitalization is done if generating the property name from the accessor method
name). So, getURL would be the getter for a URL property.

Because of the special "acronym handling" property naming logic in the JavaBeans
specification, the conversion to and from a property name are non-symmetrical.
This leads to some strange edge cases. Groovy adopts a naming convention that
avoids one ambiguity that might seem a little strange but was popular at the time of
Groovy’s design and has remained (so far) for historical reasons. Groovy looks at

NOTE the second letter of a property name. If that is a capital, the property is deemed to
be one of the acronym style properties and no capitalization is done, otherwise
normal capitalization is done. Although we never recommend it, it does allow you to
have what might seem like "duplicate named" properties, e.g. you can have aProp
and AProp, or pNAME and PNAME. The getters would be getaProp and getAProp, and
getpNAME and getPNAME respectively.

Modifiers on a property

We have already seen that properties are defined by omitting the visibility modifier. In general, any
other modifiers, e.g. transient would be copied across to the field. Two special cases are worth
noting:

» final, which we saw earlier is for read-only properties, is copied onto the backing field but also
causes no setter to be defined

» staticis copied onto the backing field but also causes the accessor methods to be static

If you wish to have a modifier like final also carried over to the accessor methods, you can write
your properties long hand or consider using a split property definition.

Annotations on a property

Annotations, including those associated with AST transforms, are copied on to the backing field for

83

the property. This allows AST transforms which are applicable to fields to be applied to properties,
e.g.

class Animal {
int lowerCount = 0
@Lazy String name = { lower().toUpperCase() }()
String lower() { lowerCount++; 'sloth' }

}

def a = new Animal()

assert a.lowerCount == @8 @
assert a.name == 'SLOTH' @
assert a.lowerCount == 1 ®

@ Confirms no eager initialization
@ Normal property access

® Confirms initialization upon property access

Split property definition with an explicit backing field

Groovy’s property syntax is a convenient shorthand when your class design follows certain
conventions which align with common JavaBean practice. If your class doesn’t exactly fit these
conventions, you can certainly write the getter, setter and backing field long hand like you would in
Java. However, Groovy does provide a split definition capability which still provides a shortened
syntax while allowing slight adjustments to the conventions. For a split definition, you write a field
and a property with the same name and type. Only one of the field or property may have an initial
value.

For split properties, annotations on the field remain on the backing field for the property.
Annotations on the property part of the definition are copied onto the getter and setter methods.

This mechanism allows a number of common variations that property users may wish to use if the
standard property definition doesn’t exactly fit their needs. For example, if the backing field should
be protected rather than private:

class HasPropertyWithProtectedField {
protected String name @
String name @

@ Protected backing field for name property instead of normal private one

@ Declare name property

Or, the same example but with a package-private backing field:

class HasPropertyWithPackagePrivateField {
String name O)

84

@PackageScope String name @

@ Declare name property
@ Package-private backing field for name property instead of normal private one

As a final example, we may wish to apply method-related AST transforms, or in general, any
annotation to the setters/getters, e.g. to have the accessors be synchronized:

class HasPropertyWithSynchronizedAccessorMethods {
private String name)
@Synchronized String name @

@ Backing field for name property

@ Declare name property with annotation for setter/getter

Explicit accessor methods

The automatic generation of accessor methods doesn’t occur if there is an explicit definition of the
getter or setter in the class. This allows you to modify the normal behavior of such a getter or setter
if needed. Inherited accessor methods aren’t normally considered but if an inherited accessor
method is marked final, that will also cause no generation of an additional accessor method to
honor the final requirement of no subclassing of such methods.

Annotations

Annotation definition

An annotation is a kind of special interface dedicated at annotating elements of the code. An
annotation is a type which superinterface is the java.lang.annotation.Annotation interface.
Annotations are declared in a very similar way to interfaces, using the @interface keyword:

@interface SomeAnnotation {}

An annotation may define members in the form of methods without bodies and an optional default
value. The possible member types are limited to:

* primitive types

* java.lang.String

java.lang.Class
* an java.lang.Enum
* another java.lang.annotation.Annotation

* or any array of the above

85

https://docs.oracle.com/en/java/javase/11/docs/api/index.html?java/lang/annotation/Annotation.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html?java/lang/String.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html?java/lang/Class.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html?java/lang/Enum.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html?java/lang/annotation/Annotation.html

For example:

@interface SomeAnnotation {

String value() ©)
}
@interface SomeAnnotation {

String value() default 'something' @
}
@interface SomeAnnotation {

int step() ®
}
@interface SomeAnnotation {

Class appliesTo() @
}

@interface SomeAnnotation {}
@interface SomeAnnotations {

SomeAnnotation[] value() ®
+

enum DayOfWeek { mon, tue, wed, thu, fri, sat, sun }
@interface Scheduled {
DayOfWeek dayOflWeek() ®

}

@ an annotation defining a value member of type String

@ an annotation defining a value member of type String with a default value of something

® an annotation defining a step member of type the primitive type int

@ an annotation defining a appliesTo member of type Class

® an annotation defining a value member which type is an array of another annotation type

® an annotation defining a day0fWeek member which type is the enumeration type DayOfWeek
Unlike in the Java language, in Groovy, an annotation can be used to alter the semantics of the

language. It is especially true of AST transformations which will generate code based on
annotations.

Annotation placement

An annotation can be applied on various elements of the code:

@SomeAnnotation @
void someMethod() {
/] ...
}
@SomeAnnotation @

class SomeClass {}

@SomeAnnotation String someVar @

86

@ @SomeAnnotation applies to the someMethod method

@ @SomeAnnotation applies to the SomeClass class

® @SomeAnnotation applies to the someVar variable

In order to limit the scope where an annotation can be applied, it is necessary to declare it on the

annotation definition, using the java.lang.annotation.Target annotation. For example, here is how
you would declare that an annotation can be applied to a class or a method:

import java.lang.annotation.ElementType
import java.lang.annotation.Target

@Target([ElementType.METHOD, ElementType.TYPE]) ©)
@interface SomeAnnotation {} @

@ the @Target annotation is meant to annotate an annotation with a scope.

@ @SomeAnnotation will therefore only be allowed on TYPE or METHOD

The list of possible targets is available in the java.lang.annotation.ElementType.

Groovy does not support the
java.lang.annotation.ElementType#TYPE_PARAMETER and
java.lang.annotation.ElementType#TYPE_PARAMETER element types which
were introduced in Java 8.

WARNING

Annotation member values

When an annotation is used, it is required to set at least all members that do not have a default
value. For example:

@interface Page {
int statusCode()

}

@Page(statusCode=404)
void notFound() {
/] ...

However it is possible to omit value= in the declaration of the value of an annotation if the member
value is the only one being set:

@interface Page {
String value()
int statusCode() default 200

87

https://docs.oracle.com/en/java/javase/11/docs/api/index.html?java/lang/annotation/Target.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html?java/lang/annotation/ElementType.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html?java/lang/annotation/ElementType.html#TYPE_PARAMETER
https://docs.oracle.com/en/java/javase/11/docs/api/index.html?java/lang/annotation/ElementType.html#TYPE_PARAMETER

@Page(value="'/home") ©)
void home() {
/] ...

@Page('/users") @)
void userList() {
/] ...

@Page(value="error',statusCode=404) ®
void notFound() {
/] ...

@ we can omit the statusCode because it has a default value, but value needs to be set
@ since value is the only mandatory member without a default, we can omit value=

@ if both value and statusCode need to be set, it is required to use value= for the default value
member

Retention policy

The visibility of an annotation depends on its retention policy. The retention policy of an annotation
is set using the java.lang.annotation.Retention annotation:

import java.lang.annotation.Retention
import java.lang.annotation.RetentionPolicy

@Retention(RetentionPolicy.SOURCE) D
@interface SomeAnnotation {} @

@ the ERetention annotation annotates the @SomeAnnotation annotation

@ so @SomeAnnotation will have a SOURCE retention

The list of ©possible retention targets and description is available in the
java.lang.annotation.RetentionPolicy enumeration. The choice usually depends on whether you
want an annotation to be visible at compile time or runtime.

Closure annotation parameters

An interesting feature of annotations in Groovy is that you can use a closure as an annotation
value. Therefore annotations may be used with a wide variety of expressions and still have IDE
support. For example, imagine a framework where you want to execute some methods based on
environmental constraints like the JDK version or the OS. One could write the following code:

class Tasks {
Set result = []
void alwaysExecuted() {

88

https://docs.oracle.com/en/java/javase/11/docs/api/index.html?java/lang/annotation/Retention.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html?java/lang/annotation/RetentionPolicy.html

result << 1

}

@nlyIf({ jdk>=6 })

void supportedOnlyInJDK6() {
result << "JDK 6'

}

@OnlyIf({ jdk>=7 && windows })

void requiresJDK7AndWindows() {
result << "IDK 7 Windows'

}

For the @0nlyIf annotation to accept a Closure as an argument, you only have to declare the value as
a (lass:

@Retention(RetentionPolicy.RUNTIME)
@interface OnlyIf {
Class value() O

}

To complete the example, let’s write a sample runner that would use that information:

class Runner {
static <T> T run(Class<T> taskClass) {

def tasks = taskClass.newInstance() O)
def params = [jdk: 6, windows: false] @
tasks.class.declaredMethods.each { m -> ®
if (Modifier.isPublic(m.modifiers) && m.parameterTypes.length == 0) { @
def onlyIf = m.getAnnotation(OnlyIf) ®
if (onlyIf) {
Closure cl = onlyIf.value().newInstance(tasks,tasks) ®
cl.delegate = params @
if (c1()) {
m.invoke(tasks) ©
}
} else {
m.invoke(tasks)
}
}
}
tasks @

@ create a new instance of the class passed as an argument (the task class)
@ emulate an environment which is JDK 6 and not Windows

@ iterate on all declared methods of the task class

89

@ if the method is public and takes no arguments

® try to find the @0nlyIf annotation

® if it is found get the value and create a new Closure out of it

@ set the delegate of the closure to our environment variable

call the closure, which is the annotation closure. It will return a boolean
@ if it is true, call the method

if the method is not annotated with @0nlyIf, execute the method anyway

@ after that, return the task object

Then the runner can be used this way:

def tasks = Runner.run(Tasks)
assert tasks.result == [1, '"IDK 6'] as Set

Meta-annotations

Declaring meta-annotations

Meta-annotations, also known as annotation aliases are annotations that are replaced at compile
time by other annotations (one meta-annotation is an alias for one or more annotations). Meta-
annotations can be used to reduce the size of code involving multiple annotations.

Let’s start with a simple example. Imagine you have the @Service and @Transactional annotations
and that you want to annotate a class with both:

@Service
@Transactional
class MyTransactionalService {}

Given the multiplication of annotations that you could add to the same class, a meta-annotation
could help by reducing the two annotations with a single one having the very same semantics. For
example, we might want to write this instead:

@TransactionalService @
class MyTransactionalService {}

M @TransactionalService is a meta-annotation

A meta-annotation is declared as a regular annotation but annotated with @AnnotationCollector and
the list of annotations it is collecting. In our case, the @TransactionalService annotation can be
written:

import groovy.transform.AnnotationCollector

90

@Service

@Transactional
@AnnotationCollector

@interface TransactionalService {

}

@O

@ annotate the meta-annotation with @Service
@ annotate the meta-annotation with @Transactional

® annotate the meta-annotation with @AnnotationCollector

Behavior of meta-annotations

Groovy supports both precompiled and source form meta-annotations. This means that your meta-
annotation may be precompiled, or you can have it in the same source tree as the one you are
currently compiling.

INFO: Meta-annotations are a Groovy-only feature. There is no chance for you to annotate a Java
class with a meta-annotation and hope it will do the same as in Groovy. Likewise, you cannot write
a meta-annotation in Java: both the meta-annotation definition and usage have to be Groovy code.
But you can happily collect Java annotations and Groovy annotations within your meta-annotation.

When the Groovy compiler encounters a class annotated with a meta-annotation, it replaces it with
the collected annotations. So, in our previous example, it will replace @TransactionalService
with @Transactional and @Service:

def annotations = MyTransactionalService.annotations*.annotationType()
assert (Service in annotations)
assert (Transactional in annotations)

The conversion from a meta-annotation to the collected annotations is performed during the
semantic analysis compilation phase.

In addition to replacing the alias with the collected annotations, a meta-annotation is capable of
processing them, including arguments.

Meta-annotation parameters

Meta-annotations can collect annotations which have parameters. To illustrate this, we will imagine
two annotations, each of them accepting one argument:

@Timeout(after=3600)
@Dangerous(type="explosive')

And suppose that you want to create a meta-annotation named @Explosive:

@Timeout(after=3600)
@Dangerous(type="explosive')

91

@AnnotationCollector
public @interface Explosive {}

By default, when the annotations are replaced, they will get the annotation parameter values as
they were defined in the alias. More interesting, the meta-annotation supports overriding specific
values:

@Explosive(after=0) @
class Bomb {}

@ the after value provided as a parameter to @Explosive overrides the one defined in the @Timeout
annotation

If two annotations define the same parameter name, the default processor will copy the annotation
value to all annotations that accept this parameter:

@Retention(RetentionPolicy.RUNTIME)
public @interface Foo {

String value() ©)
}
@Retention(RetentionPolicy.RUNTIME)
public @interface Bar {

String value() @
}

@Foo

@Bar

@AnnotationCollector

public @interface FooBar {} ©,

@Foo('a")
@Bar('b")
class Bob {}

assert Bob.getAnnotation(Foo).value() == 'a’ ®
println Bob.getAnnotation(Bar).value() == 'b' ®
@FooBar('a")

class Joe {} @
assert Joe.getAnnotation(Foo).value() == 'a'
println Joe.getAnnotation(Bar).value() == 'a' ©)

@ the @Foo annotation defines the value member of type String
@ the @Bar annotation also defines the value member of type String
® the @FooBar meta-annotation aggregates @Foo and @Bar

@ class Bob is annotated with @Foo and @Bar

92

® the value of the @Foo annotation on Bob is a

® while the value of the @Bar annotation on Bob is b
@ class Joe is annotated with @FooBar

then the value of the @Foo annotation on Joe is a

@© and the value of the @Bar annotation on Joe is also a

In the second case, the meta-annotation value was copied in both @Foo and @Bar annotations.

It is a compile time error if the collected annotations define the same members
WARNING with incompatible types. For example if on the previous example @Foo defined
a value of type String but @Bar defined a value of type int.

It is however possible to customize the behavior of meta-annotations and describe how collected
annotations are expanded. We’ll look at how to do that shortly but first there is an advanced
processing option to cover.

Handling duplicate annotations in meta-annotations

The @AnnotationCollector annotation supports a mode parameter which can be used to alter how the
default processor handles annotation replacement in the presence of duplicate annotations.

INFO: Custom processors (discussed next) may or may not support this parameter.

As an example, suppose you create a meta-annotation containing the @ToString annotation and then
place your meta-annotation on a class that already has an explicit @ToString annotation. Should this
be an error? Should both annotations be applied? Does one take priority over the other? There is no
correct answer. In some scenarios it might be quite appropriate for any of these answers to be
correct. So, rather than trying to preempt one correct way to handle the duplicate annotation issue,
Groovy lets you write your own custom meta-annotation processors (covered next) and lets you
write whatever checking logic you like within AST transforms - which are a frequent target for
aggregating. Having said that, by simply setting the mode, a number of commonly expected scenarios
are handled automatically for you within any extra coding. The behavior of the mode parameter is
determined by the AnnotationCollectorMode enum value chosen and is summarized in the following
table.

Mode Description

DUPLICATE Annotations from the annotation collection will
always be inserted. After all transforms have
been run, it will be an error if multiple
annotations (excluding those with SOURCE
retention) exist.

PREFER_COLLECTOR Annotations from the collector will be added
and any existing annotations with the same
name will be removed.

93

PREFER_COLLECTOR_MERGED Annotations from the collector will be added
and any existing annotations with the same
name will be removed but any new parameters
found within existing annotations will be
merged into the added annotation.

PREFER_EXPLICIT Annotations from the collector will be ignored if
any existing annotations with the same name
are found.

PREFER_EXPLICIT MERGED Annotations from the collector will be ignored if

any existing annotations with the same name
are found but any new parameters on the
collector annotation will be added to existing
annotations.

Custom meta-annotation processors

A custom annotation processor will let you choose how to expand a meta-annotation into collected
annotations. The behaviour of the meta-annotation is, in this case, totally up to you. To do this, you
must:

* create a meta-annotation processor, extending
org.codehaus.groovy.transform.AnnotationCollectorTransform

* declare the processor to be used in the meta-annotation declaration
To illustrate this, we are going to explore how the meta-annotation @CompileDynamic is implemented.

@CompileDynamic is a meta-annotation that expands itself to @CompileStatic(TypeCheckingMode.SKIP).
The problem is that the default meta annotation processor doesn’t support enums and the
annotation value TypeCheckingMode.SKIP is one.

The naive implementation here would not work:

@CompileStatic(TypeCheckingMode.SKIP)
@AnnotationCollector
public @interface CompileDynamic {}

Instead, we will define it like this:

@AnnotationCollector(processor =
"org.codehaus.groovy.transform.CompileDynamicProcessor")
public @interface CompileDynamic {

}

The first thing you may notice is that our interface is no longer annotated with @CompileStatic. The
reason for this is that we rely on the processor parameter instead, that references a class which
will generate the annotation.

94

https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/transform/AnnotationCollectorTransform.html

Here is how the custom processor is implemented:

CompileDynamicProcessor.groovy

@CompileStatic

class CompileDynamicProcessor extends AnnotationCollectorTransform {
private static final ClassNode CS_NODE = ClassHelper.make(CompileStatic)
private static final ClassNode TC_NODE = ClassHelper.make(TypeCheckingMode)

List<AnnotationNode> visit(AnnotationNode collector,

AnnotationNode aliasAnnotationUsage,
AnnotatedNode aliasAnnotated,
SourceUnit source) {

def node = new AnnotationNode(CS_NODE)

def enumRef = new PropertyExpression(

new ClassExpression(TC_NODE), "SKIP")
node.addMember ("value", enumRef)
Collections.singletonList(node)

@06 OO ®OOO

® our custom processor is written in Groovy, and for better compilation performance, we use
static compilation

@ the custom processor has to extend
org.codehaus.groovy.transform.AnnotationCollectorTransform

® create a class node representing the @CompileStatic annotation type

@ create a class node representing the TypeCheckingMode enum type

® collector is the @AnnotationCollector node found in the meta-annotation. Usually unused.
® aliasAnnotationUsage is the meta-annotation being expanded, here it is @CompileDynamic

@ aliasAnnotated is the node being annotated with the meta-annotation

sourceUnit is the SourceUnit being compiled

© we create a new annotation node for @CompileStatic

we create an expression equivalent to TypeCheckingMode . SKIP

@ we add that expression to the annotation node, which is now
@CompileStatic(TypeCheckingMode.SKIP)

@® return the generated annotation

In the example, the visit method is the only method which has to be overridden. It is meant to
return a list of annotation nodes that will be added to the node annotated with the meta-
annotation. In this example, we return a single one corresponding to
@CompileStatic(TypeCheckingMode.SKIP).

Traits

Traits are a structural construct of the language which allows:

95

https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/transform/AnnotationCollectorTransform.html

» composition of behaviors
* runtime implementation of interfaces

* behavior overriding

compatibility with static type checking/compilation

They can be seen as interfaces carrying both default implementations and state. A trait is
defined using the trait keyword:

trait FlyingAbility {
String fly() { "I'm flying!" }

XS

}

@ declaration of a trait

@ declaration of a method inside a trait

Then it can be used like a normal interface using the implements keyword:

class Bird implements FlyingAbility {} @
def b = new Bird() @
assert b.fly() == "I'm flying!" ©)

@ Adds the trait FlyingAbility to the Bird class capabilities
@ instantiate a new Bird

® the Bird class automatically gets the behavior of the FlyingAbility trait

Traits allow a wide range of capabilities, from simple composition to testing, which are described
thoroughly in this section.

Methods

Public methods
Declaring a method in a trait can be done like any regular method in a class:
trait FlyingAbility { @
@

String fly() { "I'm flying!" }
}

@ declaration of a trait

@ declaration of a method inside a trait

Abstract methods

In addition, traits may declare abstract methods too, which therefore need to be implemented in
the class implementing the trait:

96

trait Greetable {

abstract String name() ©)
String greeting() { "Hello, ${name()}!" } @
}
@ implementing class will have to declare the name method
@ can be mixed with a concrete method
Then the trait can be used like this:
class Person implements Greetable { ©)
String name() { 'Bob' } @
}
def p = new Person()
assert p.greeting() == 'Hello, Bob!' ®

@ implement the trait Greetable
@ since name was abstract, it is required to implement it

® then greeting can be called

Private methods

Traits may also define private methods. Those methods will not appear in the trait contract
interface:

trait Greeter {
private String greetingMessage() { ©)
'"Hello from a private method!'

}
String greet() {
def m = greetingMessage() @
println m
m
}
}
class GreetingMachine implements Greeter {} ®
def g = new GreetingMachine()
assert g.greet() == "Hello from a private method!" @
try {
assert g.greetingMessage() ®

} catch (MissingMethodException e) {
println "greetingMessage is private in trait"

}

@ define a private method greetingMessage in the trait

97

@ the public greet message calls greetingMessage by default
® create a class implementing the trait
@ greet can be called

® but not greetingMessage

Traits only support public and private methods. Neither protected nor package

WARNING .
private scopes are supported.

Final methods

If we have a class implementing a trait, conceptually implementations from the trait methods are
"Inherited" into the class. But, in reality, there is no base class containing such implementations.
Rather, they are woven directly into the class. A final modifier on a method just indicates what the
modifier will be for the woven method. While it would likely be considered bad style to inherit and
override or multiply inherit methods with the same signature but a mix of final and non-final
variants, Groovy doesn’t prohibit this scenario. Normal method selection applies and the modifier
used will be determined from the resulting method. You might consider creating a base class which
implements the desired trait(s) if you want trait implementation methods that can’t be overridden.

The meaning of this

this represents the implementing instance. Think of a trait as a superclass. This means that when
you write:

trait Introspector {
def whoAmI() { this }

}

class Foo implements Introspector {}
def foo = new Foo()

then calling:

foo.whoAmI()

will return the same instance:

assert foo.whoAmI().is(foo)

Interfaces

Traits may implement interfaces, in which case the interfaces are declared using the implements
keyword:

interface Named { ©)
String name()

98

ks
trait Greetable implements Named { @

String greeting() { "Hello, ${name()}!" }

}

class Person implements Greetable { ®
String name() { 'Bob' } @

}

def p = new Person()

assert p.greeting() == 'Hello, Bob!' ®

assert p instanceof Named ®

assert p instanceof Greetable @

@ declaration of a normal interface

@ add Named to the list of implemented interfaces

® declare a class that implements the Greetable trait
@ implement the missing name method

® the greeting implementation comes from the trait
® make sure Person implements the Named interface

@ make sure Person implements the Greetable trait

Properties

A trait may define properties, like in the following example:

trait Named {

String name
}
class Person implements Named {}
def p = new Person(name: 'Bob')
assert p.name == 'Bob'
assert p.getName() == 'Bob'

O®OO ©

@ declare a property name inside a trait

@ declare a class which implements the trait

® the property is automatically made visible

@ it can be accessed using the regular property accessor

® or using the regular getter syntax

Fields

Private fields

Since traits allow the use of private methods, it can also be interesting to use private fields to store
state. Traits will let you do that:

99

trait Counter {
private int count = 0
int count() { count += 1; count }
}
class Foo implements Counter {}
def f = new Foo()
assert f.count() ==
assert f.count() ==

® @ ©

@ declare a private field count inside a trait
@ declare a public method count that increments the counter and returns it
® declare a class that implements the Counter trait

@ the count method can use the private field to keep state

This is a major difference with Java 8 virtual extension methods. While virtual
extension methods do not carry state, traits can. Moreover, traits in Groovy are
TIP supported starting with Java 6, because their implementation does not rely on virtual
extension methods. This means that even if a trait can be seen from a Java class as a
regular interface, that interface will not have default methods, only abstract ones.

Public fields

Public fields work the same way as private fields, but in order to avoid the diamond problem, field
names are remapped in the implementing class:

trait Named {

public String name
}
class Person implements Named {}
def p = new Person()
p.Named__name = 'Bob’

®O0 O

@ declare a public field inside the trait

@ declare a class implementing the trait

® create an instance of that class

@ the public field is available, but renamed

The name of the field depends on the fully qualified name of the trait. All dots (.) in package are
replaced with an underscore (_), and the final name includes a double underscore. So if the type of

the field is String, the name of the package is my.package, the name of the trait is Foo and the name
of the field is bar, in the implementing class, the public field will appear as:

String my_package_Foo__bar

100

http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
http://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

While traits support public fields, it is not recommended to use them and

WARNING
considered as a bad practice.

Composition of behaviors

Traits can be used to implement multiple inheritance in a controlled way. For example, we can have
the following traits:

trait FlyingAbility {
String fly() { "I'm flying!" }

® O

}
trait SpeakingAbility {

String speak() { "I'm speaking!" }
}

And a class implementing both traits:

class Duck implements FlyingAbility, SpeakingAbility {} @

def d = new Duck() ®)
assert d.fly() == "I'm flying!" ®
assert d.speak() == "I'm speaking!" ®@

@ the Duck class implements both FlyingAbility and SpeakingAbility
@ creates a new instance of Duck

® we can call the method fly from FlyingAbility

@ but also the method speak from SpeakingAbility

Traits encourage the reuse of capabilities among objects, and the creation of new classes by the
composition of existing behavior.

Overriding default methods

Traits provide default implementations for methods, but it is possible to override them in the
implementing class. For example, we can slightly change the example above, by having a duck
which quacks:

class Duck implements FlyingAbility, SpeakingAbility {
String quack() { "Quack!" }
String speak() { quack() }

®O

}

def d = new Duck()

assert d.fly() == "I'm flying!"
assert d.quack() == "Quack!"
assert d.speak() == "Quack!"

©O®O

101

@ define a method specific to Duck, named quack

@ override the default implementation of speak so that we use quack instead
® the duck is still flying, from the default implementation

@ quack comes from the Duck class

® speak no longer uses the default implementation from SpeakingAbility

Extending traits

Simple inheritance

Traits may extend another trait, in which case you must use the extends keyword:

trait Named {

String name ©)
}
trait Polite extends Named {

String introduce() { "Hello, I am $name" } ®
+

class Person implements Polite {}
def p = new Person(name: 'Alice')
assert p.introduce() == 'Hello, I am Alice'

©®

@ the Named trait defines a single name property

@ the Polite trait extends the Named trait

® Polite adds a new method which has access to the name property of the super-trait
@ the name property is visible from the Person class implementing Polite

® as is the introduce method

Multiple inheritance

Alternatively, a trait may extend multiple traits. In that case, all super traits must be declared in the
implements clause:

trait Withld { D
Long 1id

}

trait WithName { @

String name

}
trait Identified implements WithId, WithName {} ®

® WithId trait defines the id property
@ WithName trait defines the name property
® Identifiedis a trait which inherits both WithId and WithName

102

Duck typing and traits

Dynamic code

Traits can call any dynamic code, like a normal Groovy class. This means that you can, in the body
of a method, call methods which are supposed to exist in an implementing class, without having to
explicitly declare them in an interface. This means that traits are fully compatible with duck typing:

trait SpeakingDuck {

String speak() { quack() } ®
}
class Duck implements SpeakingDuck {

String methodMissing(String name, args) {

"${name.capitalize()}!" @)
}
}
def d = new Duck()
assert d.speak() == 'Quack!' ®

@ the SpeakingDuck expects the quack method to be defined
@ the Duck class does implement the method using methodMissing

® calling the speak method triggers a call to quack which is handled by methodMissing

Dynamic methods in a trait

It is also possible for a trait to implement MOP methods like methodMissing or propertyMissing, in
which case implementing classes will inherit the behavior from the trait, like in this example:

trait DynamicObject { @
private Map props = [:]
def methodMissing(String name, args) {
name. toUpperCase()
}
def propertyMissing(String name) {
props.get(name)
}
void setProperty(String name, Object value) {
props.put(name, value)
}
}

class Dynamic implements DynamicObject {

String existingProperty = 'ok' @
String existingMethod() { 'ok' } ®
}
def d = new Dynamic()
assert d.existingProperty == 'ok' @
assert d.foo == null ®
d.foo = 'bar' ®

103

assert d.foo == 'bar'
assert d.existingMethod() == 'ok'
assert d.someMethod() == 'SOMEMETHOD'

©®Q

@ create a trait implementing several MOP methods

@ the Dynamic class defines a property

® the Dynamic class defines a method

@ calling an existing property will call the method from Dynamic

® calling a non-existing property will call the method from the trait
® will call setProperty defined on the trait

@ will call getProperty defined on the trait

calling an existing method on Dynamic

@ but calling a non-existing method thanks to the trait methodMissing

Multiple inheritance conflicts

Default conflict resolution

It is possible for a class to implement multiple traits. If some trait defines a method with the same
signature as a method in another trait, we have a conflict:

trait A {
String exec() { 'A" } ©)
}
trait B {
String exec() { 'B' }
}
class C implements A,B {}

@ trait A defines a method named exec returning a String

@ trait B defines the very same method

® class C implements both traits

In this case, the default behavior is that the method from the last declared trait in the implements

clause wins. Here, B is declared after A so the method from B will be picked up:

def ¢ = new C()
assert c.exec() == 'B'

User conflict resolution

In case this behavior is not the one you want, you can explicitly choose which method to call using
the Trait.super.foo syntax. In the example above, we can ensure the method from trait A is
invoked by writing this:

104

class C implements A,B {
String exec() { A.super.exec() } D

}
def ¢ = new C()
assert c.exec() == 'A' @)

@ explicit call of exec from the trait A

@ calls the version from A instead of using the default resolution, which would be the one from B

Runtime implementation of traits

Implementing a trait at runtime

Groovy also supports implementing traits dynamically at runtime. It allows you to "decorate" an
existing object using a trait. As an example, let’s start with this trait and the following class:

trait Extra {
String extra() { "I'm an extra method" } O)
+
class Something {
String doSomething() { 'Something' }

CXS)

}

@ the Extra trait defines an extra method
@ the Something class does not implement the Extra trait

® Something only defines a method doSomething

Then if we do:

def s = new Something()
s.extra()

the call to extra would fail because Something is not implementing Extra. It is possible to do it at
runtime with the following syntax:

def s = new Something() as Extra @
s.extra() @
s.doSomething() ®

@ use of the as keyword to coerce an object to a trait at runtime
@ then extra can be called on the object

® and doSomething is still callable

When coercing an object to a trait, the result of the operation is not the same
instance. It is guaranteed that the coerced object will implement both the

IMPORTANT

105

trait and the interfaces that the original object implements, but the result
will not be an instance of the original class.

Implementing multiple traits at once

Should you need to implement several traits at once, you can use the withTraits method instead of
the as keyword:

trait A { void methodFromA() {} }
trait B { void methodFromB() {} }

class C {}

def ¢ = new C()
c.methodFromA()
c.methodFromB()
def d = c.withTraits A, B
d.methodFromA()
d.methodFromB()

CXCKCAORS)

@ call to methodFromA will fail because C doesn’t implement A

@ call to methodFromB will fail because C doesn’t implement B

® withTraits will wrap c into something which implements A and B
@ methodFromA will now pass because d implements A

® methodFromB will now pass because d also implements B

When coercing an object to multiple traits, the result of the operation is not
the same instance. It is guaranteed that the coerced object will implement
both the traits and the interfaces that the original object implements, but the
result will not be an instance of the original class.

IMPORTANT

Chaining behavior

Groovy supports the concept of stackable traits. The idea is to delegate from one trait to the other if
the current trait is not capable of handling a message. To illustrate this, let’s imagine a message
handler interface like this:

interface MessageHandler {
void on(String message, Map payload)
}

Then you can compose a message handler by applying small behaviors. For example, let’s define a
default handler in the form of a trait:

trait DefaultHandler implements MessageHandler {
void on(String message, Map payload) {

106

println "Received $message with payload $payload”

Then any class can inherit the behavior of the default handler by implementing the trait:

class SimpleHandler implements DefaultHandler {}

Now what if you want to log all messages, in addition to the default handler? One option is to write
this:

class SimpleHandlerWithLogging implements DefaultHandler {
void on(String message, Map payload) {
println "Seeing $message with payload $payload”
DefaultHandler.super.on(message, payload)

CXCXS,

@ explicitly implement the on method
@ perform logging

® continue by delegating to the DefaultHandler trait
This works but this approach has drawbacks:

1. the logging logic is bound to a "concrete" handler

2. we have an explicit reference to DefaultHandler in the on method, meaning that if we happen to
change the trait that our class implements, code will be broken

As an alternative, we can write another trait which responsibility is limited to logging:

trait LoggingHandler implements MessageHandler { ©)
void on(String message, Map payload) {
println "Seeing $message with payload $payload”
super.on(message, payload)

XS

@ the logging handler is itself a handler
@ prints the message it receives

® then super makes it delegate the call to the next trait in the chain

Then our class can be rewritten as this:

class HandlerWithLogger implements DefaultHandler, LoggingHandler {}
def loggingHandler = new HandlerWithLogger()

107

loggingHandler.on('test logging', [:])

which will print:

Seeing test logging with payload [:]
Received test logging with payload [:]

As the priority rules imply that LoggerHandler wins because it is declared last, then a call to on will
use the implementation from LoggingHandler. But the latter has a call to super, which means the
next trait in the chain. Here, the next trait is DefaultHandler so both will be called:

The interest of this approach becomes more evident if we add a third handler, which is responsible
for handling messages that start with say:

trait SayHandler implements MessageHandler {
void on(String message, Map payload) {

if (message.startsWith("say")) { @
println "I say ${message - 'say'}!"
} else {
super.on(message, payload) @
}

@ a handler specific precondition

@ if the precondition is not met, pass the message to the next handler in the chain

Then our final handler looks like this:

class Handler implements DefaultHandler, SayHandler, LoggingHandler {}
def h = new Handler()

h.on('foo', [:])

h.on('sayHello", [:])

Which means:

* messages will first go through the logging handler

the logging handler calls super which will delegate to the next handler, which is the SayHandler
* if the message starts with say, then the handler consumes the message
* if not, the say handler delegates to the next handler in the chain
This approach is very powerful because it allows you to write handlers that do not know each other

and yet let you combine them in the order you want. For example, if we execute the code, it will
print:

108

Seeing foo with payload [:]
Received foo with payload [:]
Seeing sayHello with payload [:]
I say Hello!

but if we move the logging handler to be the second one in the chain, the output is different:

class AlternateHandler implements DefaultHandler, LoggingHandler, SayHandler {}
h = new AlternateHandler()

h.on('foo', [:])

h.on('sayHello", [:])

prints:

Seeing foo with payload [:]
Received foo with payload [:]
I say Hello!

The reason is that now, since the SayHandler consumes the message without calling super, the
logging handler is not called anymore.

Semantics of super inside a trait
If a class implements multiple traits and a call to an unqualified super is found, then:

1. if the class implements another trait, the call delegates to the next trait in the chain

2. if there isn’t any trait left in the chain, super refers to the super class of the implementing class
(this)

For example, it is possible to decorate final classes thanks to this behavior:

trait Filtering { @
StringBuilder append(String str) { @
def subst = str.replace('o',"") ®
super.append(subst) @
}
String toString() { super.toString() } ®
}
def sb = new StringBuilder().withTraits Filtering ®
sb.append('Groovy")
assert sb.toString() == 'Grvy' @

@ define a trait named Filtering, supposed to be applied on a StringBuilder at runtime
@ redefine the append method

® remove all '0’s from the string

109

@ then delegate to super
® in case toString is called, delegate to super.toString
® runtime implementation of the Filtering trait on a StringBuilder instance

@ the string which has been appended no longer contains the letter o

In this example, when super.append is encountered, there is no other trait implemented by the
target object, so the method which is called is the original append method, that is to say the one from
StringBuilder. The same trick is used for toString, so that the string representation of the proxy
object which is generated delegates to the toString of the StringBuilder instance.

Advanced features

SAM type coercion

If a trait defines a single abstract method, it is candidate for SAM (Single Abstract Method) type
coercion. For example, imagine the following trait:

trait Greeter {
String greet() { "Hello $name" } ©)
abstract String getName() @

@ the greet method is not abstract and calls the abstract method getName

@ getName is an abstract method

Since getName is the single abstract method in the Greeter trait, you can write:

Greeter greeter = { 'Alice' } @

@ the closure "becomes" the implementation of the getName single abstract method

or even:

void greet(Greeter g) { println g.greet() } @
greet { 'Alice' } @

@ the greet method accepts the SAM type Greeter as parameter

@ we can call it directly with a closure

Differences with Java 8 default methods

In Java 8, interfaces can have default implementations of methods. If a class implements an
interface and does not provide an implementation for a default method, then the implementation
from the interface is chosen. Traits behave the same but with a major difference: the
implementation from the trait is always used if the class declares the trait in its interface list and
that it doesn’t provide an implementation even if a super class does.

110

This feature can be used to compose behaviors in a very precise way, in case you want to override
the behavior of an already implemented method.

To illustrate the concept, let’s start with this simple example:

import groovy.test.GroovyTestCase

import groovy.transform.CompileStatic

import org.codehaus.groovy.control.CompilerConfiguration

import org.codehaus.groovy.control.customizers.ASTTransformationCustomizer
import org.codehaus.groovy.control.customizers.ImportCustomizer

class SomeTest extends GroovyTest(Case {
def config
def shell

void setup() {
config = new CompilerConfiguration()
shell = new GroovyShell(config)

}

void testSomething() {
assert shell.evaluate('1+1') == 2

}

void otherTest() { /* ... */ }

In this example, we create a simple test case which uses two properties (config and shell) and uses
those in multiple test methods. Now imagine that you want to test the same, but with another
distinct compiler configuration. One option is to create a subclass of SomeTest:

class AnotherTest extends SomeTest {
void setup() {
config = new CompilerConfiguration()
config.addCompilationCustomizers(...)
shell = new GroovyShell(config)

It works, but what if you have actually multiple test classes, and that you want to test the new
configuration for all those test classes? Then you would have to create a distinct subclass for each
test class:

class YetAnotherTest extends SomeTest {
void setup() {
config = new CompilerConfiguration()
config.addCompilationCustomizers(...)
shell = new GroovyShell(config)

111

Then what you see is that the setup method of both tests is the same. The idea, then, is to create a
trait:

trait MyTestSupport {
void setup() {
config = new CompilerConfiguration()
config.addCompilationCustomizers(new ASTTransformationCustomizer
(CompileStatic))
shell = new GroovyShell(config)

}

Then use it in the subclasses:

class AnotherTest extends SomeTest implements MyTestSupport {}
class YetAnotherTest extends SomeTest2 implements MyTestSupport {}

It would allow us to dramatically reduce the boilerplate code, and reduces the risk of forgetting to
change the setup code in case we decide to change it. Even if setup is already implemented in the
super class, since the test class declares the trait in its interface list, the behavior will be borrowed
from the trait implementation!

This feature is in particular useful when you don’t have access to the super class source code. It can
be used to mock methods or force a particular implementation of a method in a subclass. It lets you
refactor your code to keep the overridden logic in a single trait and inherit a new behavior just by
implementing it. The alternative, of course, is to override the method in every place you would
have used the new code.

It’s worth noting that if you use runtime traits, the methods from the trait

IMPORTANT
are always preferred to those of the proxied object:

class Person {

String name ©)
}
trait Bob {

String getName() { 'Bob' } @)
}
def p = new Person(name: 'Alice')
assert p.name == 'Alice' ©)
def p2 = p as Bob @
assert p2.name == 'Bob' ®

112

@ the Person class defines a name property which results in a getName method
@ Bob is a trait which defines getName as returning Bob

® the default object will return Alice

@ p2 coerces p into Bob at runtime

® getName returns Bob because getName is taken from the trait

Again, don’t forget that dynamic trait coercion returns a distinct object

IMPORTANT
which only implements the original interfaces, as well as the traits.

Differences with mixins

There are several conceptual differences with mixins, as they are available in Groovy. Note that we
are talking about runtime mixins, not the @Mixin annotation which is deprecated in favour of
traits.

First of all, methods defined in a trait are visible in bytecode:

internally, the trait is represented as an interface (without default or static methods) and
several helper classes

* this means that an object implementing a trait effectively implements an interface
* those methods are visible from Java

 they are compatible with type checking and static compilation

Methods added through a mixin are, on the contrary, only visible at runtime:

assert o instanceof A
assert !(o instanceof B)

class A { String methodFromA() { 'A' } } @)

class B { String methodFromB() { 'B' } } @

A.metaClass.mixin B ®

def o = new A()

assert o.methodFromA() == 'A’ @

assert o.methodFromB() == 'B' ®
®
@

@ class A defines methodFromA
@ class B defines methodFromB
® mixin B into A

@ we can call methodFromA

® we can also call methodFromB
® the object is an instance of A
@ but it’s not an instanceof B

The last point is actually a very important and illustrates a place where mixins have an advantage
over traits: the instances are not modified, so if you mixin some class into another, there isn’t a

113

third class generated, and methods which respond to A will continue responding to A even if mixed
in.

Static methods, properties and fields

The following instructions are subject to caution. Static member support is
WARNING work in progress and still experimental. The information below is valid for
{groovyVersion} only.

It is possible to define static methods in a trait, but it comes with numerous limitations:

 Traits with static methods cannot be compiled statically or type checked. All static methods,
properties and field are accessed dynamically (it’s a limitation from the JVM).

« Static methods do not appear within the generated interfaces for each trait.

* The trait is interpreted as a template for the implementing class, which means that each
implementing class will get its own static methods, properties and fields. So a static member
declared on a trait doesn’t belong to the Trait, but to its implementing class.

* You should typically not mix static and instance methods of the same signature. The normal
rules for applying traits apply (including multiple inheritance conflict resolution). If the method
chosen is static but some implemented trait has an instance variant, a compilation error will
occur. If the method chosen is the instance variant, the static variant will be ignored (the
behavior is similar to static methods in Java interfaces for this case).

Let’s start with a simple example:

trait TestHelper {
public static boolean CALLED = false
static void init() {
CALLED = true

CXCXS,

}

class Foo implements TestHelper {}
Foo.init()
assert Foo.TestHelper__CALLED

@ ®

@ the static field is declared in the trait

@ a static method is also declared in the trait

® the static field is updated within the trait

@ a static method init is made available to the implementing class

® the static field is remapped to avoid the diamond issue

As usual, it is not recommended to use public fields. Anyway, should you want this, you must
understand that the following code would fail:

Foo.CALLED = true

114

because there is no static field CALLED defined on the trait itself. Likewise, if you have two distinct
implementing classes, each one gets a distinct static field:

class Bar implements TestHelper {}
class Baz implements TestHelper {}
Bar.init()

assert Bar.TestHelper__CALLED
assert !Baz.TestHelper__CALLED

OO

@ class Bar implements the trait

@ class Baz also implements the trait

® init is only called on Bar

@ the static field CALLED on Bar is updated

® but the static field CALLED on Baz is not, because it is distinct

Inheritance of state gotchas

We have seen that traits are stateful. It is possible for a trait to define fields or properties, but when
a class implements a trait, it gets those fields/properties on a per-trait basis. So consider the
following example:

trait IntCouple {
int x = 1
inty=2
int sum() { x+y }

The trait defines two properties, x and y, as well as a sum method. Now let’s create a class which
implements the trait:

class BaseElem implements IntCouple {

int £f() { sum() }
}

def base = new BaseElem()
assert base.f() ==

The result of calling f is 3, because f delegates to sum in the trait, which has state. But what if we
write this instead?

class Elem implements IntCouple {

int x = 3 @
inty=4 @
int f() { sum() } ©)

115

def elem = new Elem()

@ Override property x
@ Override property y

@ Call sum from trait

If you call elem. f(), what is the expected output? Actually it is:

assert elem.f() ==

The reason is that the sum method accesses the fields of the trait. So it is using the x and y values
defined in the trait. If you want to use the values from the implementing class, then you need to
dereference fields by using getters and setters, like in this last example:

trait IntCouple {

int x =1
inty=2
int sum() { getX()+getY() }
¥
class Elem implements IntCouple {
int x =3
inty =4

int £f() { sum() }
}

def elem = new Elem()
assert elem.f() ==

Self types

Type constraints on traits

Sometimes you will want to write a trait that can only be applied to some type. For example, you
may want to apply a trait on a class that extends another class which is beyond your control, and
still be able to call those methods. To illustrate this, let’s start with this example:

class CommunicationService {
static void sendMessage(String from, String to, String message) { O)
println "$from sent [$message] to $to"
}
}

class Device { String id } @
trait Communicating {

void sendMessage(Device to, String message) {
CommunicationService.sendMessage(id, to.id, message) ®

116

class MyDevice extends Device implements Communicating {} @

def bob = new MyDevice(id:'Bob")
def alice = new MyDevice(id:'Alice")
bob.sendMessage(alice, 'secret') ®

@ A Service class, beyond your control (in a library, ...) defines a sendMessage method

@ A Device class, beyond your control (in a library, ...)

® Defines a communicating trait for devices that can call the service

@ Defines MyDevice as a communicating device

® The method from the trait is called, and id is resolved

It is clear, here, that the Communicating trait can only apply to Device. However, there’s no explicit
contract to indicate that, because traits cannot extend classes. However, the code compiles and runs
perfectly fine, because id in the trait method will be resolved dynamically. The problem is that
there is nothing that prevents the trait from being applied to any class which is not a Device. Any

class which has an id would work, while any class that does not have an id property would cause a
runtime error.

The problem is even more complex if you want to enable type checking or apply @CompileStatic on
the trait: because the trait knows nothing about itself being a Device, the type checker will complain
saying that it does not find the id property.

One possibility is to explicitly add a getId method in the trait, but it would not solve all issues. What

if a method requires this as a parameter, and actually requires it to be a Device?

class SecurityService {
static void check(Device d) { if (d.id==null) throw new SecurityException() }

}

If you want to be able to call this in the trait, then you will explicitly need to cast this into a Device.
This can quickly become unreadable with explicit casts to this everywhere.

The @SelfType annotation

In order to make this contract explicit, and to make the type checker aware of the type of itself,
Groovy provides a @SelfType annotation that will:

* let you declare the types that a class that implements this trait must inherit or implement

» throw a compile-time error if those type constraints are not satisfied

So in our previous example, we can fix the trait using the @groovy.transform.SelfType annotation:

@SelfType(Device)

117

@CompileStatic
trait Communicating {
void sendMessage(Device to, String message) {
SecurityService.check(this)
CommunicationService.sendMessage(id, to.id, message)

Now if you try to implement this trait on a class that is not a device, a compile-time error will
occur:

class MyDevice implements Communicating {} // forgot to extend Device

The error will be:

class 'MyDevice' implements trait 'Communicating' but does not extend self type class
'Device’

In conclusion, self types are a powerful way of declaring constraints on traits without having to
declare the contract directly in the trait or having to use casts everywhere, maintaining separation
of concerns as tight as it should be.

Differences with Sealed annotation (incubating)

Both @Sealed and @SelfType restrict classes which use a trait but in orthogonal ways. Consider the
following example:

interface HasHeight { double getHeight() }
interface HasArea { double getArea() }

@SelfType([HasHeight, HasArea]) ©)
@Sealed(permittedSubclasses=[UnitCylinder,UnitCube]) @
trait HasVolume {

double getVolume() { height * area }

}

final class UnitCube implements HasVolume, HasHeight, HasArea {
// for the purposes of this example: h=1, w=1, 1=1
double height = 1d
double area = 1d

}

final class UnitCylinder implements HasVolume, HasHeight, HasArea {
// for the purposes of this example: h=1, diameter=1
// radius=diameter/2, area=PI * rA2
double height = 1d
double area = Math.PI * 0.5d**2

118

assert new UnitCube().volume == 1d
assert new UnitCylinder().volume == 0.7853981633974483d

@ All usages of the HasVolume trait must implement or extend both HasHeight and HasArea

@ Only UnitCube or UnitCylinder can use the trait

For the degenerate case where a single class implements a trait, e.g.:

final class Foo implements FooTrait {}

Then, either:

@SelfType(Foo)
trait FooTrait {}

or:

@Sealed(permittedSubclasses="Foo') M
trait FooTrait {}

® Or just @Sealed if Foo and FooTrait are in the same source file

could express this constraint. Generally, the former of these is preferred.

Limitations
Compatibility with AST transformations

Traits are not officially compatible with AST transformations. Some of them,
like @CompileStatic will be applied on the trait itself (not on implementing

CAUTION classes), while others will apply on both the implementing class and the trait.
There is absolutely no guarantee that an AST transformation will run on a trait
as it does on a regular class, so use it at your own risk!

Prefix and postfix operations

Within traits, prefix and postfix operations are not allowed if they update a field of the trait:

trait Counting {
int x
void inc() {
X++ @
}
void dec() {

119

}
}
class Counter implements Counting {}
def ¢ = new Counter()
c.inc()

@ x is defined within the trait, postfix increment is not allowed
@ x is defined within the trait, prefix decrement is not allowed

A workaround is to use the += operator instead.

Record classes (incubating)

Record classes, or records for short, are a special kind of class useful for modelling plain data
aggregates. They provide a compact syntax with less ceremony than normal classes. Groovy already
has AST transforms such as @Immutable and @Canonical which already dramatically reduce
ceremony but records have been introduced in Java and record classes in Groovy are designed to
align with Java record classes.

For example, suppose we want to create a Message record representing an email message. For the
purposes of this example, let’s simplify such a message to contain just a from email address, a to
email address, and a message body. We can define such a record as follows:

record Message(String from, String to, String body) { }
We’d use the record class in the same way as a normal class, as shown below:

def msg = new Message('me@myhost.com', 'you@yourhost.net', 'Hello!')
assert msg.toString() == 'Message[from=me@myhost.com, to=you@yourhost.net,
body=Hello!]'

The reduced ceremony saves us from defining explicit fields, getters and toString, equals and
hashCode methods. In fact, it’s a shorthand for the following rough equivalent:

final class Message extends Record {
private final String from
private final String to
private final String body
private static final long serialVersionUID = @
/* constructor(s) */

final String toString() { /*...*/ }

final boolean equals(Object other) { /*...*/ }

120

final int hashCode() { /*...*/ }

String from() { from }
// other getters ...

Note the special naming convention for record getters. They are the same name as the field (rather
than the often common JavaBean convention of capitalized with a "get" prefix). Rather than
referring to a record’s fields or properties, the term component is typically used for records. So our
Message record has from, to, and body components.

Like in Java, you can override the normally implicitly supplied methods by writing your own:

record Point3D(int x, int y, int z) {
String toString() {
"Point3D[coords=$x, $y,$z]1"
}
}

assert new Point3D(10, 20, 30).toString() == 'Point3D[coords=10,20,30]'

You can also use generics with records in the normal way. For example, consider the following
Coord record definition:

record Coord<T extends Number>(T v1, T v2){
double distFromOrigin() { Math.sqrt(v1()**2 + v2()**2 as double) }

}

It can be used as follows:

def r1 = new Coord<Integer>(3, 4)
assert r1.distFromOrigin() ==

def r2 = new Coord<Double>(6d, 2.5d)
assert r2.distFromOrigin() == 6.5d

Special record features

Compact constructor

Records have an implicit constructor. This can be overridden in the normal way by providing your
own constructor - you need to make sure you set all the fields if you do this. However, for
succinctness, a compact constructor syntax can be used where the parameter declaration part of a
normal constructor is elided. For this special case, the normal implicit constructor is still provided
but is augmented by the supplied statements in the compact constructor definition:

public record Warning(String message) {

121

public Warning {
Objects.requireNonNull(message)
message = message.toUpperCase()

}
}
def w = new Warning('Help")
assert w.message() == 'HELP'
Serializability

Groovy native records follow the special conventions for serializability which apply to Java records.
Groovy record-like classes (discussed below) follow normal Java class serializability conventions.

Groovy enhancements

Argument defaults

Groovy supports default values for constructor arguments. This capability is also available for
records as shown in the following record definition which has default values for y and color:

record ColoredPoint(int x, int y = @, String color = 'white') {}

Arguments when left off (dropping one or more arguments from the right) are replaced with their
defaults values as shown in the following example:

assert new ColoredPoint(5, 5, 'black').toString() == 'ColoredPoint[x=5, y=5,
color=black]"

assert new ColoredPoint(5, 5).toString() == 'ColoredPoint[x=5, y=5, color=white]'
assert new ColoredPoint(5).toString() == 'ColoredPoint[x=5, y=0, color=white]'

This processing follows normal Groovy conventions for default arguments for constructors,
essentially automatically providing the constructors with the following signatures:

ColoredPoint(int, int, String)
ColoredPoint(int, int)
ColoredPoint(int)

Named arguments may also be used (default values also apply here):

assert new ColoredPoint(x: 5).toString() == 'ColoredPoint[x=5, y=0, color=white]’
assert new ColoredPoint(x: @, y: 5).toString() == 'ColoredPoint[x=0, y=5,
color=white]'

You can disable default argument processing as shown here:

122

https://docs.oracle.com/en/java/javase/16/docs/specs/records-serialization.html

@TupleConstructor(defaultsMode=DefaultsMode.OFF)

record ColoredPoint2(int x, int y, String color) {}

assert new ColoredPoint2(4, 5, 'red').toString() == 'ColoredPoint2[x=4, y=5,
color=red]'

This will produce a single constructor as per the default with Java. It will be an error if you drop off
arguments in this scenario.

You can force all properties to have a default value as shown here:

@TupleConstructor(defaultsMode=DefaultsMode.ON)
record ColoredPoint3(int x, int y = @, String color = 'white') {}
assert new ColoredPoint3(y: 5).toString() == 'ColoredPoint3[x=0, y=5, color=white]’

Any property/field without an explicit initial value will be given the default value for the
argument’s type (null, or zero/false for primitives).

Diving deeper

We previously described a Message record and displayed it’s rough equivalent. Groovy in fact
steps through an intermediate stage where the record keyword is replaced by the class
keyword and an accompanying @RecordType annotation:

@RecordType

class Message {
String from
String to
String body

Then @RecordType itself is processed as a meta-annotation (annotation collector) and expanded
into its constituent sub-annotations such as @TupleConstructor, @0J0, @RecordBase, and others.
This is in some sense an implementation detail which can often be ignored. However, if you
wish to customise or configure the record implementation, you may wish to drop back to the
@RecordType style or augment your record class with one of the constituent sub-annotations.

Declarative toString customization

As per Java, you can customize a record’s toString method by writing your own. If you prefer a
more declarative style, you can alternatively use Groovy’s @ToString transform to override the
default record toString. As an example, you can a three-dimensional point record as follows:

package threed

import groovy.transform.ToString

123

@ToString(ignoreNulls=true, cache=true, includeNames=true,
leftDelimiter="[", rightDelimiter="]", nameValueSeparator="=")
record Point(Integer x, Integer y, Integer z=null) { }

assert new Point(10, 20).toString() == 'threed.Point[x=10, y=20]'

We customise the toString by including the package name (excluded by default for records) and by
caching the toString value since it won’t change for this immutable record. We are also ignoring
null values (the default value for z in our definition).

We can have a similar definition for a two-dimensional point:

package twod

import groovy.transform.ToString

@ToString(ignoreNulls=true, cache=true, includeNames=true,
leftDelimiter="[", rightDelimiter="]", nameValueSeparator='=")

record Point(Integer x, Integer y) { }

assert new Point(10, 20).toString() == 'twod.Point[x=10, y=20]'

We can see here that without the package name it would have the same toString as our previous
example.

Obtaining a list of the record component values

We can obtain the component values from a record as a list like so:

record Point(int x, int y, String color) { }
def p = new Point(100, 200, 'green')

def (x, y, ¢) = p.tolist()

assert x == 100

assert y == 200
assert ¢ == 'green’

You can use @RecordOptions(tolList=false) to disable this feature

Obtaining a map of the record component values

We can obtain the component values from a record as a map like so:

record Point(int x, int y, String color) { }

def p = new Point(100, 200, 'green')

124

assert p.toMap() == [x: 100, y: 200, color: 'green']

You can use @RecordOptions(toMap=false) to disable this feature.

Obtaining the number of components in a record

We can obtain the number of components in a record like so:

record Point(int x, int y, String color) { }

def p = new Point(100, 200, 'green')
assert p.size() ==

You can use @RecordOptions(size=false) to disable this feature.

Obtaining the n™ component from a record

We can use Groovy’s normal positional indexing to obtain a particular component in a record like
so:

record Point(int x, int y, String color) { }

def p = new Point(100, 200, 'green')
assert p[1] == 200

You can use @RecordOptions(getAt=false) to disable this feature.
Optional Groovy features

Copying

It can be useful to make a copy of a record with some components changed. This can be done using
an optional copyWith method which takes named arguments. Record components are set from the
supplied arguments. For components not mentioned, a (shallow) copy of the original record
component is used. Here is how you might use copyWith for the Fruit record:

©RecordOptions(copyWith=true)

record Fruit(String name, double price) {}
def apple = new Fruit('Apple’, 11.6)
assert 'Apple' == apple.name()

assert 11.6 == apple.price()

def orange = apple.copyWith(name: 'Orange')
assert orange.toString() == 'Fruit[name=0Orange, price=11.6]"

The copyWith functionality can be disabled by setting the RecordOptions#icopyWith annotation
attribute to false.

125

Deep immutability

As with Java, records by default offer shallow immutability. Groovy’s @Immutable transform
performs defensive copying for a range of mutable data types. Records can make use of this
defensive copying to gain deep immutability as follows:

@ImmutableProperties
record Shopping(List items) {}

def items = ['bread', 'milk']

def shop = new Shopping(items)

items << 'chocolate'

assert shop.items() == ['bread', 'milk']

These examples illustrate the principal behind Groovy’s record feature offering three levels of
convenience:

* Using the record keyword for maximum succinctness
» Supporting low-ceremony customization using declarative annotations

* Allowing normal method implementations when full control is required

Obtaining the components of a record as a typed tuple

You can obtain the components of a record as a typed tuple:

import groovy.transform.*

©RecordOptions(components=true)
record Point(int x, int y, String color) { }

@CompileStatic
def method() {
def p1 = new Point(100, 200, 'green')
def (int x1, int y1, String c1) = p1.components()
assert x1 == 100
assert y1 == 200
assert c¢1 == 'green'

def p2 = new Point(10, 20, 'blue')
def (x2, y2, c2) = p2.components()
assert x2 * 10 == 100

assert y2 ** 2 == 400

assert c2.toUpperCase() == 'BLUE'

def p3 = new Point(1, 2, 'red")
assert p3.components() instanceof Tuple3

126

method()

Groovy has a limited number of TupleN classes. If you have a large number of components in your
record, you might not be able to use this feature.

Other differences to Java

Groovy supports creating record-like classes as well as native records. Record-like classes don’t
extend Java’s Record class and such classes won’t be seen by Java as records but will otherwise have
similar properties.

The @RecordOptions annotation (part of @RecordType) supports a mode annotation attribute which can
take one of three values (with AUTO being the default):

NATIVE

Produces a class similar to what Java would do. Produces an error when compiling on JDKs
earlier than JDK16.

EMULATE

Produces a record-like class for all JDK versions.

AUTO

Produces a native record for JDK16+ and emulates the record otherwise.

Whether you use the record keyword or the @RecordType annotation is independent of the mode.

Sealed hierarchies (incubating)

Sealed classes, interfaces and traits restrict which subclasses can extend/implement them. Prior to
sealed classes, class hierarchy designers had two main options:

* Make a class final to allow no extension.

* Make the class public and non-final to allow extension by anyone.
Sealed classes provide a middle-ground compared to these all or nothing choices.

Sealed classes are also more flexible than other tricks previously used to try to achieve a middle-
ground. For example, for class hierarchies, access modifiers like protected and package-private give
some ability to restrict inheritance hierarchies but often at the expense of flexible use of those
hierarchies.

Sealed hierarchies provide full inheritance within a known hierarchy of classes, interfaces and
traits but disable or only provide controlled inheritance outside the hierarchy.

As an example, suppose we want to create a shape hierarchy containing only circles and squares.
We also want a shape interface to be able to refer to instances in our hierarchy. We can create the
hierarchy as follows:

sealed interface Shapel permits Circle,Square { }

127

final class Circle implements Shapel { }
final class Square implements Shapel { }

Groovy also supports an alternative annotation syntax. We think the keyword style is nicer but you
might choose the annotation style if your editor doesn’t yet have Groovy 4 support.

@Sealed(permittedSubclasses=[Circle,Square]) interface Shapel { }
final class Circle implements Shapel { }
final class Square implements Shapel { }

We can have a reference of type Shapel which, thanks to the permits clause, can point to either a
Circle or Square and, since our classes are final, we know no additional classes will be added to our
hierarchy in the future. At least not without changing the permits clause and recompiling.

In general, we might want to have some parts of our class hierarchy immediately locked down like
we have here, where we marked the subclasses as final but other times we might want to allow
further controlled inheritance.

sealed class Shape permits Circle,Polygon,Rectangle { }
final class Circle extends Shape { }

class Polygon extends Shape { }

non-sealed class RegularPolygon extends Polygon { }

final class Hexagon extends Polygon { }

sealed class Rectangle extends Shape permits Square{ }
final class Square extends Rectangle { }

v <Click to see the alternate annotations syntax>
@Sealed(permittedSubclasses=[Circle,Polygon,Rectangle]) class Shape { }
final class Circle extends Shape { }
class Polygon extends Shape { }

@NonSealed class RegularPolygon extends Polygon { }

final class Hexagon extends Polygon { }

@Sealed(permittedSubclasses=Square) class Rectangle extends Shape { }
final class Square extends Rectangle { }

In this example, our permitted subclasses for Shape are Circle, Polygon, and Rectangle. Circle is
final and hence that part of the hierarchy cannot be extended. Polygon is implicitly non-sealed and
RegularPolygon is explicitly marked as non-sealed. That means our hierarchy is open to any further
extension by subclassing, as seen with Polygon » RegularPolygon and RegularPolygon - Hexagon.

128

Rectangle is itself sealed which means that part of the hierarchy can be extended but only in a
controlled way (only Square is permitted).

Sealed classes are useful for creating enum-like related classes which need to contain instance
specific data. For instance, we might have the following enum:

enum Weather { Rainy, Cloudy, Sunny }
def forecast = [Weather.Rainy, Weather.Sunny, Weather.Cloudy]
assert forecast.toString() == '[Rainy, Sunny, Cloudy]'

but we now wish to also add weather specific instance data to weather forecasts. We can alter our
abstraction as follows:

sealed abstract class Weather { }

@Immutable(includeNames=true) class Rainy extends Weather { Integer expectedRainfall }
@Immutable(includeNames=true) class Sunny extends Weather { Integer expectedTemp }
@Immutable(includeNames=true) class Cloudy extends Weather { Integer expectedUV }

def forecast = [new Rainy(12), new Sunny(35), new Cloudy(6)]

assert forecast.toString() == '[Rainy(expectedRainfall:12), Sunny(expectedTemp:35),
Cloudy(expectedUV:6)]"

Sealed hierarchies are also useful when specifying Algebraic or Abstract Data Types (ADTs) as
shown in the following example:

import groovy.transform.*

sealed interface Tree<T> {}
@Singleton final class Empty implements Tree {
String toString() { 'Empty' }

}

@Canonical final class Node<T> implements Tree<T> {
T value
Tree<T> left, right

}

Tree<Integer> tree = new Node<>(42, new Node<>(@, Empty.instance, Empty.instance),
Empty.instance)
assert tree.toString() == 'Node(42, Node(@, Empty, Empty), Empty)'

Sealed hierarchies work well with records as shown in the following example:

sealed interface Expr {}

record ConstExpr(int i) implements Expr {}

record PlusExpr(Expr e1, Expr e2) implements Expr {}
record MinusExpr(Expr e1, Expr e2) implements Expr {}
record NegExpr(Expr e) implements Expr {}

129

def threePlusNegOne = new PlusExpr(new ConstExpr(3), new NegExpr(new ConstExpr(1)))
assert threePlusNegOne.toString() == 'PlusExpr[el=ConstExpr[i=3],
e2=NegExpr[e=ConstExpr[i=1]]]"

Differences to Java

* Java provides no default modifier for subclasses of sealed classes and requires that one of final,
sealed or non-sealed be specified. Groovy defaults to non-sealed but you can still use non-
sealed/@NonSealed if you wish. We anticipate the style checking tool CodeNarc will eventually
have a rule that looks for the presence of non-sealed so developers wanting that stricter style
will be able to use CodeNarc and that rule if they want.

* Currently, Groovy doesn’t check that all classes mentioned in permittedSubclasses are available
at compile-time and compiled along with the base sealed class. This may change in a future
version of Groovy.

Groovy supports annotating classes as sealed as well as "native" sealed classes.

The @SealedOptions annotation supports a mode annotation attribute which can take one of three
values (with AUTO being the default):

NATIVE

Produces a class similar to what Java would do. Produces an error when compiling on JDKs
earlier than JDK17.

EMULATE

Indicates the class is sealed using the @Sealed annotation. This mechanism works with the
Groovy compiler for JDK8+ but is not recognised by the Java compiler.

AUTO

Produces a native record for JDK17+ and emulates the record otherwise.

Whether you use the sealed keyword or the @Sealed annotation is independent of the mode.

Closures

This chapter covers Groovy Closures. A closure in Groovy is an open, anonymous, block of code that
can take arguments, return a value and be assigned to a variable. A closure may reference
variables declared in its surrounding scope. In opposition to the formal definition of a closure,
(losure in the Groovy language can also contain free variables which are defined outside of its
surrounding scope. While breaking the formal concept of a closure, it offers a variety of advantages
which are described in this chapter.

Syntax

Defining a closure

A closure definition follows this syntax:

130

{ [closureParameters ->] statements }

Where [closureParameters->] is an optional comma-delimited list of parameters, and statements
are 0 or more Groovy statements. The parameters look similar to a method parameter list, and
these parameters may be typed or untyped.

When a parameter list is specified, the -> character is required and serves to separate the
arguments from the closure body. The statements portion consists of 0, 1, or many Groovy
statements.

Some examples of valid closure definitions:

{ item++ } ©)
{ -> item++ } @
{ println it } ®
{ it -> println it } @
{ name -> println name } ®
{ String x, int y -> ®
println "hey ${x} the value is ${y}"
}
{ reader -> @
def line = reader.readlLine()
line.trim()
}

@ A closure referencing a variable named item

@ It is possible to explicitly separate closure parameters from code by adding an arrow (->)
® A closure using an implicit parameter (it)

@ An alternative version where it is an explicit parameter

® In that case it is often better to use an explicit name for the parameter

® A closure accepting two typed parameters

@ A closure can contain multiple statements

Closures as an object

A closure is an instance of the groovy.lang.(Closure class, making it assignable to a variable or a field
as any other variable, despite being a block of code:

def listener = { e -> println "Clicked on $e.source" } @

131

assert listener instanceof Closure
Closure callback = { println 'Done!" }
Closure<Boolean> isTextFile = {

File it -> it.name.endsWith('.txt")

@ You can assign a closure to a variable, and it is an instance of groovy.1lang.Closure
@ If not using def or var, use groovy.lang.Closure as the type

® Optionally, you can specify the return type of the closure by using the generic type of
groovy.lang.Closure

Calling a closure

A closure, as an anonymous block of code, can be called like any other method. If you define a
closure which takes no argument like this:

def code = { 123 }

Then the code inside the closure will only be executed when you call the closure, which can be
done by using the variable as if it was a regular method:

assert code() == 123

Alternatively, you can be explicit and use the call method:

assert code.call() == 123

The principle is the same if the closure accepts arguments:

def is0dd = { int i -> %2 != 0 }
assert is0dd(3) == true
assert is0dd.call(2) == false

def isEven = { it%2 == 0 }
assert isEven(3) == false
assert isEven.call(2) == true

@O® 0O

@ define a closure which accepts an int as a parameter

@ it can be called directly

® or using the call method

@ same goes for a closure with an implicit argument (it)
® which can be called directly using (arg)

® or using call

132

Unlike a method, a closure always returns a value when called. The next section discusses how to
declare closure arguments, when to use them and what is the implicit "it" parameter.

Parameters
Normal parameters
Parameters of closures follow the same principle as parameters of regular methods:

* an optional type
* aname

* an optional default value

Parameters are separated with commas:

def closureWithOneArg = { str -> str.toUpperCase() }
assert closureWithOneArg('groovy') == "GROOVY'

def closureWithOneArgAndExplicitType = { String str -> str.toUpperCase() }
assert closureWithOneArgAndExplicitType('groovy') == '"GROOVY'

def closureWithTwoArgs = { a,b -> a+b }
assert closureWithTwoArgs(1,2) ==

def closureWithTwoArgsAndExplicitTypes = { int a, int b -> a+b }
assert closureWithTwoArgsAndExplicitTypes(1,2) == 3

def closureWithTwoArgsAndOptionalTypes = { a, int b -> a+b }
assert closureWithTwoArgsAndOptionalTypes(1,2) == 3

def closureWithTwoArgAndDefaultValue = { int a, int b=2 -> a+b }
assert closureWithTwoArgAndDefaultValue(1) ==

Implicit parameter

When a closure does not explicitly define a parameter list (using ->), a closure always defines an
implicit parameter, named it. This means that this code:

def greeting = { "Hello, $it!" }
assert greeting('Patrick') == 'Hello, Patrick!'

is strictly equivalent to this one:

def greeting = { it -> "Hello, $it!" }
assert greeting('Patrick') == 'Hello, Patrick!'

133

If you want to declare a closure which accepts no argument and must be restricted to calls without
arguments, then you must declare it with an explicit empty argument list:

def magicNumber = { -> 42 }

// this call will fail because the closure doesn't accept any argument
magicNumber(11)

Varargs

It is possible for a closure to declare variable arguments like any other method. Vargs methods are
methods that can accept a variable number of arguments if the last parameter is of variable length
(or an array) like in the next examples:

def concat1 = { String... args -> args.join('"') } ®
assert concat1('abc', 'def') == 'abcdef' @
def concat2 = { String[] args -> args.join('") } ©)
assert concat2('abc', 'def') == 'abcdef'

def multiConcat = { int n, String... args -> @

args.join('')*n
}
assert multiConcat(2, 'abc','def') == 'abcdefabcdef'

@ A closure accepting a variable number of strings as first parameter

@ It may be called using any number of arguments without having to explicitly wrap them into an
array

® The same behavior is directly available if the args parameter is declared as an array

@ As long as the last parameter is an array or an explicit vargs type

Delegation strategy

Groovy closures vs lambda expressions

Groovy defines closures as instances of the Closure class. It makes it very different from lambda
expressions in Java 8. Delegation is a key concept in Groovy closures which has no equivalent in
lambdas. The ability to change the delegate or change the delegation strategy of closures make it
possible to design beautiful domain specific languages (DSLs) in Groovy.

Owner, delegate and this

To understand the concept of delegate, we must first explain the meaning of this inside a closure. A
closure actually defines 3 distinct things:

* this corresponds to the enclosing class where the closure is defined

* owner corresponds to the enclosing object where the closure is defined, which may be either a

134

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

class or a closure

» delegate corresponds to a third party object where methods calls or properties are resolved
whenever the receiver of the message is not defined

The meaning of this

In a closure, calling getThisObject will return the enclosing class where the closure is defined. It is
equivalent to using an explicit this:

class Enclosing {
void run() {

def whatIsThisObject = { getThisObject() } @)
assert whatIsThisObject() == this @
def whatIsThis = { this } ©)
assert whatIsThis() == this @
}
}
class EnclosedInInnerClass {
class Inner {
Closure cl = { this } ®
}
void run() {
def inner = new Inner()
assert inner.cl() == inner ®
}
}
class NestedClosures {
void run() {
def nestedClosures = {
def cl = { this } @
cl()
}
assert nestedClosures() == this

@ a closure is defined inside the Enclosing class, and returns getThisObject

@ calling the closure will return the instance of Enclosing where the closure is defined
® in general, you will just want to use the shortcut this notation

@ and it returns exactly the same object

® if the closure is defined in an inner class

® this in the closure will return the inner class, not the top-level one

@ in case of nested closures, like here c1 being defined inside the scope of nestedClosures

then this corresponds to the closest outer class, not the enclosing closure!

It is of course possible to call methods from the enclosing class this way:

135

class Person {
String name
int age
String toString() { "$name is $age years old" }

String dump() {

def cl = {
String msqg = this.toString() ©)
println msg
msg
}
cl()
}
}
def p = new Person(name: 'Janice', age:74)
assert p.dump() == 'Janice is 74 years old'

@ the closure calls toString on this, which will actually call the toString method on the enclosing
object, that is to say the Person instance

Owner of a closure

The owner of a closure is very similar to the definition of this in a closure with a subtle difference:
it will return the direct enclosing object, be it a closure or a class:

class Enclosing {
void run() {

def whatIsOwnerMethod = { getOwner() } @
assert whatIsOwnerMethod() == this @
def whatIsOwner = { owner } ®
assert whatIsOwner() == this)
}
}
class EnclosedInInnerClass {
class Inner {
Closure cl = { owner } ®
}
void run() {
def inner = new Inner()
assert inner.cl() == inner ®
}
}
class NestedClosures {
void run() {
def nestedClosures = {
def ¢l = { owner } @
cl()
}
assert nestedClosures() == nestedClosures ®

136

@ a closure is defined inside the Enclosing class, and returns getOwner

@ calling the closure will return the instance of Enclosing where the closure is defined

® in general, you will just want to use the shortcut owner notation

@ and it returns exactly the same object

® if the closure is defined in an inner class

® owner in the closure will return the inner class, not the top-level one

@ but in case of nested closures, like here c1 being defined inside the scope of nestedClosures

then owner corresponds to the enclosing closure, hence a different object from this!

Delegate of a closure

The delegate of a closure can be accessed by using the delegate property or calling the getDelegate
method. It is a powerful concept for building domain specific languages in Groovy. While this and
owner refer to the lexical scope of a closure, the delegate is a user defined object that a closure will
use. By default, the delegate is set to owner:

class Enclosing {
void run() {
def cl = { getDelegate() }
def c12 = { delegate }
assert cl() == cl12()
assert cl() == this
def enclosed = {
{ -> delegate }.call()
}

assert enclosed() == enclosed

©@ © ®OEO

@ you can get the delegate of a closure calling the getDelegate method
@ or using the delegate property

® both return the same object

@ which is the enclosing class or closure

® in particular in case of nested closures

® delegate will correspond to the owner

The delegate of a closure can be changed to any object. Let’s illustrate this by creating two classes
which are not subclasses of each other but both define a property called name:

class Person {
String name

}

137

class Thing {
String name

+
def p = new Person(name: 'Norman')
def t = new Thing(name: 'Teapot')

Then let’s define a closure which fetches the name property on the delegate:

def upperCasedName = { delegate.name.toUpperCase() }

Then by changing the delegate of the closure, you can see that the target object will change:

upperCasedName.delegate = p
assert upperCasedName() == "NORMAN'
upperCasedName.delegate = t

assert upperCasedName() == 'TEAPOT'

At this point, the behavior is not different from having a target variable defined in the lexical scope
of the closure:

def target = p
def upperCasedNameUsingVar = { target.name.toUpperCase() }
assert upperCasedNameUsingVar() == "NORMAN'

However, there are major differences:

* in the last example, target is a local variable referenced from within the closure

 the delegate can be used transparently, that is to say without prefixing method calls with
delegate. as explained in the next paragraph.

Delegation strategy

Whenever, in a closure, a property is accessed without explicitly setting a receiver object, then a
delegation strategy is involved:

class Person {
String name

}

def p = new Person(name: 'Igor')

def cl1 = { name.toUpperCase() } ©)
cl.delegate = p @
assert c1() == "IGOR' ®

@ name is not referencing a variable in the lexical scope of the closure

138

@ we can change the delegate of the closure to be an instance of Person

® and the method call will succeed

The reason this code works is that the name property will be resolved transparently on the delegate
object! This is a very powerful way to resolve properties or method calls inside closures. There’s no
need to set an explicit delegate. receiver: the call will be made because the default delegation
strategy of the closure makes it so. A closure actually defines multiple resolution strategies that you
can choose:

* Closure.OWNER_FIRST is the default strategy. If a property/method exists on the owner, then it
will be called on the owner. If not, then the delegate is used.
* (losure.DELEGATE_FIRST reverses the logic: the delegate is used first, then the owner

* Closure.OWNER_ONLY will only resolve the property/method lookup on the owner: the delegate
will be ignored.

* Closure.DELEGATE_ONLY will only resolve the property/method lookup on the delegate: the owner
will be ignored.

* Closure.TO_SELF can be used by developers who need advanced meta-programming techniques
and wish to implement a custom resolution strategy: the resolution will not be made on the
owner or the delegate but only on the closure class itself. It makes only sense to use this if you
implement your own subclass of Closure.

Let’s illustrate the default "owner first" strategy with this code:

class Person {
String name

def pretty = { "My name is $name" } ®
String toString() {
pretty()

}
}
class Thing {

String name @
}
def p = new Person(name: 'Sarah')
def t = new Thing(name: 'Teapot')
assert p.toString() == 'My name is Sarah' ©)
p.pretty.delegate = t @
assert p.toString() == 'My name is Sarah' ®

@ for the illustration, we define a closure member which references "name
@ both the Person and the Thing class define a name property
® Using the default strategy, the name property is resolved on the owner first

@ so if we change the delegate to t which is an instance of Thing

139

® there is no change in the result: name is first resolved on the owner of the closure

However, it is possible to change the resolution strategy of the closure:

p.pretty.resolveStrategy = Closure.DELEGATE_FIRST
assert p.toString() == 'My name is Teapot'

By changing the resolveStrategy, we are modifying the way Groovy will resolve the "implicit this"
references: in this case, name will first be looked in the delegate, then if not found, on the owner.
Since name is defined in the delegate, an instance of Thing, then this value is used.

The difference between "delegate first" and "delegate only" or "owner first" and "owner only" can
be illustrated if one of the delegate (resp. owner) does not have such a method or property:

class Person {

String name

int age

def fetchAge = { age }
¥
class Thing {

String name

}
def p = new Person(name: 'Jessica', age:42)
def t = new Thing(name: 'Printer")

def cl = p.fetchAge
cl.delegate = p

assert cl() == 42 @D
cl.delegate = t
assert cl() == 42 ©)

cl.resolveStrateqy = Closure.DELEGATE_ONLY

cl.delegate = p
assert cl() == 42 @
cl.delegate = t
try {
cl() ©)

assert false
} catch (MissingPropertyException ex) {
// "age" is not defined on the delegate

}

@ for "owner first" it doesn’t matter what the delegate is
@ for "delegate only" having p as the delegate succeeds

@ for "delegate only" having t as the delegate fails

In this example, we define two classes which both have a name property but only the Person class
declares an age. The Person class also declares a closure which references age. We can change the

140

default resolution strategy from "owner first" to "delegate only". Since the owner of the closure is
the Person class, then we can check that if the delegate is an instance of Person, calling the closure is
successful, but if we call it with a delegate being an instance of Thing, it fails with a
groovy.lang.MissingPropertyException. Despite the closure being defined inside the Person class, the
owner is not used.

A comprehensive explanation about how to use this feature to develop DSLs can be

NOTE
found in a dedicated section of the manual.

Delegation strategy in the presence of metaprogramming

When describing the "owner first" delegation strategy we spoke about using a property/method
from the owner if it "existed" otherwise using the respective property/method from the delegate.
And a similar story for "delegate first" but in reverse. Instead of using the word "existed", it would
have been more accurate to use the wording "handled". That means that for "owner first", if the
property/method exists in the owner, or it has a propertyMissing/methodMissing hook, then the
owner will handle the member access.

We can see this in action with a slightly altered version of our previous example:

class Person {
String name
int age
def fetchAge = { age }
¥
class Thing {
String name
def propertyMissing(String name) { -1 }

}
def p = new Person(name:'Jessica', age:42)
def t = new Thing(name: 'Printer')

def ¢l = p.fetchAge

cl.resolveStrategy = Closure.DELEGATE_FIRST
cl.delegate = p

assert cl() == 42

cl.delegate = t

assert cl() == -1

In this example, even though our instance of the Thing class (our delegate for the last use of c1) has
no age property, the fact that it handles the missing property via its propertyMissing hook, means
that age will be -1.

Closures in GStrings

Take the following code:

def x = 1

141

core-domain-specific-languages.html

def gs = "x = ${x}"
assert gs == 'x = 1'

The code behaves as you would expect, but what happens if you add:

X =2
assert gs == 'x = 2'

You will see that the assert fails! There are two reasons for this:

* a GString only evaluates lazily the toString representation of values

* the syntax ${x} in a GString does not represent a closure but an expression to $x, evaluated
when the GString is created.

In our example, the GString is created with an expression referencing x. When the GString is
created, the value of x is 1, so the GString is created with a value of 1. When the assert is triggered,
the GString is evaluated and 1 is converted to a String using toString. When we change x to 2, we
did change the value of x, but it is a different object, and the GString still references the old one.

TIP A GString will only change its toString representation if the values it references are
mutating. If the references change, nothing will happen.

If you need a real closure in a GString and for example enforce lazy evaluation of variables, you

need to use the alternate syntax ${» x} like in the fixed example:

def x =1

def gs = "x = ${-> x}"
assert gs == 'x = 1'

X = 2

assert gs == 'x = 2'

And let’s illustrate how it differs from mutation with this code:

class Person {
String name

String toString() { name } ®

}
def sam = new Person(name:'Sam") @
def lucy = new Person(name: 'Lucy') ®
def p = sam @
def gs = "Name: ${p}" ®
assert gs == 'Name: Sam' ®
p = lucy @
assert gs == 'Name: Sam'
©)

sam.name = 'lLucy'

142

assert gs == 'Name: Lucy'

@ the Person class has a toString method returning the name property

@ we create a first Person named Sam

® we create another Person named Lucy

@ the p variable is set to Sam

® and a closure is created, referencing the value of p, that is to say Sam

® so when we evaluate the string, it returns Sam

@ if we change p to Lucy

the string still evaluates to Sam because it was the value of p when the GString was created
© so if we mutate Sam to change the name to Lucy

this time the GString is correctly mutated

So if you don’t want to rely on mutating objects or wrapping objects, you must use closures in
GString by explicitly declaring an empty argument list:

class Person {
String name
String toString() { name }
}
def sam = new Person(name:'Sam')
def lucy = new Person(name: 'Lucy')
def p = sam
// Create a GString with lazy evaluation of "p"
def gs = "Name: ${-> p}"

assert gs == 'Name: Sam'
p = lucy
assert gs == 'Name: Lucy'

Closure coercion

Closures can be converted into interfaces or single-abstract method types. Please refer to this
section of the manual for a complete description.

Functional programming

Closures, like lambda expressions in Java 8 are at the core of the functional programming paradigm
in Groovy. Some functional programming operations on functions are available directly on the
Closure class, like illustrated in this section.

Currying

In Groovy, currying refers to the concept of partial application. It does not correspond to the real
concept of currying in functional programming because of the different scoping rules that Groovy
applies on closures. Currying in Groovy will let you set the value of one parameter of a closure, and

143

core-semantics.html#closure-coercion
core-semantics.html#closure-coercion
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

it will return a new closure accepting one less argument.

Left currying

Left currying is the fact of setting the left-most parameter of a closure, like in this example:

def nCopies = { int n, String str -> str*n }
def twice = nCopies.curry(2)

assert twice('bla') == 'blabla’

assert twice('bla') == nCopies(2, 'bla")

®OO

@ the nCopies closure defines two parameters

@ curry will set the first parameter to 2, creating a new closure (function) which accepts a single
String

® so the new function call be called with only a String

@ and it is equivalent to calling nCopies with two parameters

Right currying

Similarly to left currying, it is possible to set the right-most parameter of a closure:

def nCopies = { int n, String str -> str*n }
def blah = nCopies.rcurry('bla")

assert blah(2) == 'blabla'

assert blah(2) == nCopies(2, 'bla')

®OO

@ the nCopies closure defines two parameters

@ rcurry will set the last parameter to bla, creating a new closure (function) which accepts a single
int

® so the new function call be called with only an int

@ and it is equivalent to calling nCopies with two parameters

Index based currying

In case a closure accepts more than 2 parameters, it is possible to set an arbitrary parameter using
ncurry:

def volume = { double 1, double w, double h -> 1*w*h }
def fixedWidthVolume = volume.ncurry(1, 2d)

assert volume(3d, 2d, 4d) == fixedWidthVolume(3d, 4d)
def fixedWidthAndHeight = volume.ncurry(1, 2d, 4d)
assert volume(3d, 2d, 4d) == fixedWidthAndHeight(3d)

GXCKCXSXS)

@ the volume function defines 3 parameters

@ ncurry will set the second parameter (index = 1) to 2d, creating a new volume function which
accepts length and height

144

® that function is equivalent to calling volume omitting the width
@ it is also possible to set multiple parameters, starting from the specified index

® the resulting function accepts as many parameters as the initial one minus the number of
parameters set by ncurry

Memoization

Memoization allows the result of the call of a closure to be cached. It is interesting if the
computation done by a function (closure) is slow, but you know that this function is going to be
called often with the same arguments. A typical example is the Fibonacci suite. A naive
implementation may look like this:

def fib
fib = { long n -> n<2?n:fib(n-1)+fib(n-2) }
assert fib(15) == 610 // slow!

It is a naive implementation because 'fib' is often called recursively with the same arguments,
leading to an exponential algorithm:

» computing fib(15) requires the result of fib(14) and fib(13)
* computing fib(14) requires the result of fib(13) and fib(12)

Since calls are recursive, you can already see that we will compute the same values again and
again, although they could be cached. This naive implementation can be "fixed" by caching the
result of calls using memoize:

fib = { long n -> n<2?n:fib(n-1)+fib(n-2) }.memoize()
assert fib(25) == 75025 // fast!

The cache works using the actual values of the arguments. This means that
WARNING you should be very careful if you use memoization with something else than
primitive or boxed primitive types.

The behavior of the cache can be tweaked using alternate methods:

* memoizeAtMost will generate a new closure which caches at most n values
* memoizeAtLeast will generate a new closure which caches at least n values

» memoizeBetween will generate a new closure which caches at least n values and at most n values

The cache used in all memoize variants is an LRU cache.

Composition

Closure composition corresponds to the concept of function composition, that is to say creating a
new function by composing two or more functions (chaining calls), as illustrated in this example:

145

def plus2 ={ it +2}
def times3 = { it * 3 }

def times3plus2 = plus2 << times3
assert times3plus2(3) == 11
assert times3plus2(4) == plus2(times3(4))

def plus2times3 = times3 << plus2
assert plus2times3(3) == 15
assert plus2times3(5) == times3(plus2(5))

// reverse composition
assert times3plus2(3) == (times3 >> plus2)(3)

Trampoline

Recursive algorithms are often restricted by a physical limit: the maximum stack height. For
example, if you call a method that recursively calls itself too deep, you will eventually receive a
StackOverflowException.

An approach that helps in those situations is by using Closure and its trampoline capability.

Closures are wrapped in a TrampolineClosure. Upon calling, a trampolined Closure will call the
original Closure waiting for its result. If the outcome of the call is another instance of a
TrampolineClosure, created perhaps as a result to a call to the trampoline() method, the Closure will
again be invoked. This repetitive invocation of returned trampolined Closures instances will
continue until a value other than a trampolined Closure is returned. That value will become the
final result of the trampoline. That way, calls are made serially, rather than filling the stack.

Here’s an example of the use of trampoline() to implement the factorial function:

def factorial

factorial = { int n, def accu = 16 ->
if (n < 2) return accu
factorial.trampoline(n - 1, n * accu)

}

factorial = factorial.trampoline()
assert factorial(1) == 1

assert factorial(3) = 1 “®2%E

assert factorial(1000) // == 402387260.. plus another 2560 digits

Method pointers

It is often practical to be able to use a regular method as a closure. For example, you might want to
use the currying abilities of a closure, but those are not available to normal methods. In Groovy,
you can obtain a closure from any method with the method pointer operator.

146

core-operators.html#method-pointer-operator

Semantics

This chapter covers the semantics of the Groovy programming language.

Statements

Variable definition

Variables can be defined using either their type (like String) or by using the keyword def followed
by a variable name:

String x
def y

def acts as a type placeholder, i.e. a replacement for the type name, when you do not want to give
an explicit type. It could be that you don’t care about the type at compile time or are relying on type
inference (with Groovy’s static nature). It is mandatory for variable definitions to have a type or
placeholder. If left out, the type name will be deemed to refer to an existing variable (presumably
declared earlier). For scripts, undeclared variables are assumed to come from the Script binding. In
other cases, you will get a missing property (dynamic Groovy) or compile time error (static Groovy).
If you think of def as an alias of Object, you will understand in an instant.

Variable definitions can provide an initial value, in which case it’s like having a declaration and
assignment (which we cover next) all in one.

Variable definition types can be refined by using generics, like in List<String>

NOTE . . .
names. To learn more about the generics support, please read the generics section.
Java introduced the var reserved type from Java 10. It also acts like a type
placeholder for variable definitions, similar to def above. So, for compatibility with
Java, Groovy also lets you define variables using var as follows:

NOTE var z

In the context of variable definitions, you can think of var as an alias for def. You
might use var if you have cut-n-pasted some Java code into your codebase, or if the
audience (readers or maintainers) of your codebase are primarily Java-aware folks,
and you want to make the code look familiar to them.

Variable assignment

You can assign values to variables for later use. Try the following:

x =1
println x

147

X = new java.util.Date()
println x

x = -3.1499392
println x

x = false
println x

X = llH_i n
println x

Multiple assignment

Groovy supports multiple assignment, i.e. where multiple variables can be assigned at once, e.g.:

def (a, b, ¢) = [10, 20, 'foo']
assert a == 10 && b == 20 && c == 'foo'

You can provide types as part of the declaration if you wish:

def (int i, String j) = [10, 'foo']
assert i == 10 & j == 'foo'

As well as used when declaring variables it also applies to existing variables:

def nums = [1, 3, 5]

def a, b, c

(a, b, ¢) = nums

assert a == 1 &% b == 3 && c ==

The syntax works for arrays as well as lists, as well as methods that return either of these:

def (_, month, year) = "18th June 2009".split()
assert "In $month of $year" == 'In June of 2009’

Overflow and Underflow

If the left hand side has too many variables, excess ones are filled with null’s:

def (a, b, ¢) = [1, 2]
assert a == 1 && b == 2 && c == null

If the right hand side has too many variables, the extra ones are ignored:

148

dEf (a, b) = [11 2: 3]
assert a == 1 &% b ==
Object destructuring with multiple assignment

In the section describing Groovy’s operators, the case of the subscript operator has been covered,
explaining how you can override the getAt()/putAt() method.

With this technique, we can combine multiple assignments and the subscript operator methods to
implement object destructuring.

Consider the following immutable Coordinates class, containing a pair of longitude and latitude
doubles, and notice our implementation of the getAt() method:

@Immutable

class Coordinates {
double latitude
double longitude

double getAt(int idx) {
if (idx == @) latitude

else if (idx == 1) longitude
else throw new Exception('Wrong coordinate index, use @ or 1")

Now let’s instantiate this class and destructure its longitude and latitude:

def coordinates = new Coordinates(latitude: 43.23, longitude: 3.67) @
def (la, 1lo) = coordinates @

assert la == 43.23 ®
assert lo == 3.67

@ we create an instance of the Coordinates class
@ then, we use a multiple assignment to get the individual longitude and latitude values

® and we can finally assert their values.

Control structures
Conditional structures

if / else

Groovy supports the usual if - else syntax from Java

149

def x = false
def y = false
if ((Ix) {

X = true
}

assert x == true

if (x){
x = false
} else {
y = true
}

assert x ==y

Groovy also supports the normal Java "nested" if then else if syntax:

if (...) A
s eléé.if (..0) {
} else {

}

switch / case

The switch statement in Groovy is backwards compatible with Java code; so you can fall through
cases sharing the same code for multiple matches.

One difference though is that the Groovy switch statement can handle any kind of switch value and
different kinds of matching can be performed.

def x = 1.23
def result = ""

switch (x) {
case "foo":
result = "found foo"
// lets fall through

case "bar":
result += "bar"

case [4, 5, 6, 'inlList']:
result = "list"

150

break

case 12..30:
result = "range"
break

case Integer:
result = "integer"
break

case Number:
result = "number"
break

case ~/fo*/: // toString() representation of x matches the pattern?
result = "foo regex"
break

case { it<@}: //or {x<0}
result = "negative"

break
default:
result = "default"
}
assert result == "number"

Switch supports the following kinds of comparisons:

* Class case values match if the switch value is an instance of the class

* Regular expression case values match if the toString() representation of the switch value
matches the regex

* Collection case values match if the switch value is contained in the collection. This also includes
ranges (since they are Lists)

* Closure case values match if the calling the closure returns a result which is true according to
the Groovy truth

* If none of the above are used then the case value matches if the case value equals the switch
value

When using a closure case value, the default it parameter is actually the switch

NOTE
value (in our example, variable x).

Groovy also supports switch expressions as shown in the following example:

def partner = switch(person) {
case 'Romeo’ -> 'Juliet'

151

case 'Adam' -> 'Eve'
case 'Antony' -> 'Cleopatra’
case 'Bonnie' -> 'Clyde’

Looping structures

Classic for loop

Groovy supports the standard Java / C for loop:

String message =

for (int i =0; i <5; 1i+=1) {
message += 'Hi '

}

assert message == 'Hi Hi Hi Hi Hi '

Enhanced classic Java-style for loop

The more elaborate form of Java’s classic for loop with comma-separate expressions is now
supported. Example:

def facts = []

def count = 5

for (int fact =1, i = 1; i <= count; i++, fact *= i) {
facts << fact

+
assert facts == [1, 2, 6, 24, 120]

Multi-assignment in combination with for loop

Groovy has supported multi-assignment statements since Groovy 1.6:

// multi-assignment with types
def (String x, int y) = ['foo', 42]
assert "$x $y" == 'foo 42'

These can now appear in for loops:

// multi-assignment goes loopy

def baNums = []

for (def (String u, int v) = ['bar', 42]; v < 45; u++, v++) {
baNums << "$u $v"

}
assert baNums == ['bar 42', 'bas 43', 'bat 44']

152

for in loop

The for loop in Groovy is much simpler and works with any kind of array, collection, Map, etc.

// iterate over a range
def x = 0
for (1 in 0..9) {
X 4= 1
}

assert x == 45

// iterate over a list

x =0

for (iin [0, 1, 2, 3, 4]) {
X += 1

+

assert x == 10

// iterate over an array

X =0

for (i in new int[]{0, 1, 2, 3, 4}) {
X += i

}

assert x == 10

// iterate over a map
def map = [a:1, b:2, c:3]
x =0
for (e inmap) {
X += e.value

}

assert x ==

// iterate over values in a map

X =0

for (v in map.values()) {
X += Vv

+

assert x == 6

// iterate over the characters in a string
def list = []
for (¢ in 'abc') {
list.add(c)
}

assert list == ['a', 'b', 'c']
// iterate with index

for (int i, k in map.keySet()) {
assert map.get(k) == i + 1

153

NOTE Groovy also supports the Java colon variation with colons: for (char ¢ : text) {}

while loop

Groovy supports the usual while {...} loops like Java:

def x
def y

mn n
(S 2 B~

while (y-- >0) {
X++

}

assert x == 5

do/while loop

Java’s class do/while loop is now supported. Example:

// classic Java-style do..while loop
def count =5
def fact = 1
do {
fact *= count--
} while(count > 1)
assert fact == 120

Exception handling

Exception handling is the same as Java.

try / catch / finally

You can specify a complete try-catch-finally, a try-catch, or a try-finally set of blocks.

NOTE Braces are required around each block’s body.

try {

'moo'.tolong() // this will generate an exception

assert false // asserting that this point should never be reached
} catch (e) {

assert e in NumberFormatException

}

154

We can put code within a 'finally' clause following a matching 'try' clause, so that regardless of

whether the code in the 'try' clause throws an exception, the code in the finally clause will always
execute

def z
try {
def i =7, =20
try {
def k =i/ j
assert false //never reached due to Exception in previous line
+ finally {
z = 'reached here' //always executed even if Exception thrown

}

} catch (e) {
assert e in ArithmeticException
assert z == 'reached here'

Multi-catch

With the multi catch block (since Groovy 2.0), we’re able to define several exceptions to be catch
and treated by the same catch block:

try {
75 oan 2

} catch (IOException | NullPointerException e) {
/* one block to handle 2 exceptions */

}

ARM Try with resources

Groovy often provides better alternatives to Java 7’s try-with-resources statement for Automatic

Resource Management (ARM). That syntax is now supported for Java programmers migrating to
Groovy and still wanting to use the old style:

class FromResource extends ByteArrayInputStream {
@0verride
void close() throws IOException {
super.close()
println "FromResource closing"

}
FromResource(String input) {
super (input.tolLowerCase().bytes)
}
+

class ToResource extends ByteArrayOutputStream {

155

@0verride

void close() throws IOException {
super.close()
println "ToResource closing"

}
}
def wrestle(s) {
try (
FromResource from = new FromResource(s)
ToResource to = new ToResource()
) {
to << from

return to.toString()

}

def wrestle2(s) {
FromResource from = new FromResource(s)
try (from; ToResource to = new ToResource()) { // Enhanced try-with-resources in
Java 9+
to << from
return to.toString()

}

assert wrestle("ARM was here!").contains('arm')
assert wrestle2("ARM was here!").contains('arm')

Which yields the following output:

ToResource closing
FromResource closing
ToResource closing
FromResource closing

Power assertion

Unlike Java with which Groovy shares the assert keyword, the latter in Groovy behaves very
differently. First of all, an assertion in Groovy is always executed, independently of the -ea flag of
the JVM. It makes this a first class choice for unit tests. The notion of "power asserts" is directly
related to how the Groovy assert behaves.

A power assertion is decomposed into 3 parts:

assert [left expression] == [right expression] : (optional message)

The result of the assertion is very different from what you would get in Java. If the assertion is true,

156

then nothing happens. If the assertion is false, then it provides a visual representation of the value
of each sub-expressions of the expression being asserted. For example:

assert 1+1 ==

Will yield:

Caught: Assertion failed:

assert 1+1 ==

|
2 false

Power asserts become very interesting when the expressions are more complex, like in the next
example:

def x = 2
def y = 7
def z = 5

def calc = { a,b -> a*b+1 }
assert cale(x,y) == [x,z].sum()

Which will print the value for each sub-expression:

assert cale(x,y) == [x,z].sum()

I T O O
15 27 | 25 7

false

In case you don’t want a pretty printed error message like above, you can fall back to a custom
error message by changing the optional message part of the assertion, like in this example:

def x = 2
def y =7
def z = 5

def calec = { a,b -> a*b+1 }
assert cale(x,y) == z*z : 'Incorrect computation result'

Which will print the following error message:

Incorrect computation result. Expression: (calc.call(x, y) == (z * z)). Values: z = 5,
225

157

Labeled statements

Any statement can be associated with a label. Labels do not impact the semantics of the code and
can be used to make the code easier to read like in the following example:

given:

def x = 1

def y = 2
when:

def z = x+y
then:

assert z ==

Despite not changing the semantics of the labelled statement, it is possible to use labels in the break
instruction as a target for jump, as in the next example. However, even if this is allowed, this coding
style is in general considered a bad practice:

for (int i=0;i<10;i++) {
for (int j=@;j<i;j++) {
println "j=$j"
if (j ==5) {
break exit

)
} .

exit: println "i=§i

It is important to understand that by default labels have no impact on the semantics of the code,
however they belong to the abstract syntax tree (AST) so it is possible for an AST transformation to
use that information to perform transformations over the code, hence leading to different
semantics. This is in particular what the Spock Framework does to make testing easier.

Expressions

Expressions are the building blocks of Groovy programs that are used to reference existing values
and execute code to create new ones.

Groovy supports many of the same kinds of expressions as Java, including:

Table 5. Expressions like Java

Example expression(s) Description

foo the name of a variable, field, parameter, ...
this, super, it special names

true, 10, "bar" literals

String.class Class literal

158

http://spockframework.github.io/spock/docs/current/index.html

(expression) parenthesised expressions

foo++, ~bar Unary operator expressions
foo + bar, bar * baz Binary operator expressions
foo 7 bar : baz Ternary operator expressions
(Integer x, Integer y) » x +y Lambda expressions
) switch expressions
assert 'bar' == switch('foo') {
case 'foo' -> 'bar'
}

Groovy also has some of its own special expressions:

Table 6. Special expressions

Example expression(s) Description

String Abbreviated class literal (when not ambiguous)
{x,y>x+y} Closure expressions

[1, 3, 5] literal list expressions

[a:2, b:4, c:6] literal map expressions

Groovy also expands on the normal dot-notation used in Java for member access. Groovy provides
special support for accessing hierarchical data structures by specifying the path in the hierarchy of
some data of interest. These Groovy path expressions are known as GPath expressions.

GPath expressions

GPath is a path expression language integrated into Groovy which allows parts of nested structured
data to be identified. In this sense, it has similar aims and scope as XPath does for XML. GPath is
often used in the context of processing XML, but it really applies to any object graph. Where XPath
uses a filesystem-like path notation, a tree hierarchy with parts separated by a slash /, GPath use a
dot-object notation to perform object navigation.

As an example, you can specify a path to an object or element of interest:

* a.b.c - for XML, yields all the ¢ elements inside b inside a

* a.b.c - for POJOs, yields the c properties for all the b properties of a (sort of like
a.getB().getC() in JavaBeans)

In both cases, the GPath expression can be viewed as a query on an object graph. For POJOs, the
object graph is most often built by the program being written through object instantiation and
composition; for XML processing, the object graph is the result of parsing the XML text, most often
with classes like XmlParser or XmlSlurper. See Processing XML for more in-depth details on
consuming XML in Groovy.

TIP When querying the object graph generated from XmlParser or XmlSlurper, a GPath

159

core-operators.html
core-operators.html
core-operators.html

expression can refer to attributes defined on elements with the @ notation:

» a["@href"] — map-like notation : the href attribute of all the a elements
* 3.'@href' — property notation : an alternative way of expressing this

* a.ehref — direct notation : yet another alternative way of expressing this

Object navigation

Let’s see an example of a GPath expression on a simple object graph, the one obtained using java

reflection. Suppose you are in a non-static method of a class having another method named
aMethodFoo

void aMethodFoo() { println "This is aMethodFoo." } @
the following GPath expression will get the name of that method:
assert ['aMethodFoo'] == this.class.methods.name.grep(~/.*Foo/)

More precisely, the above GPath expression produces a list of String, each being the name of an
existing method on this where that name ends with Foo.

Now, given the following methods also defined in that class:
void aMethodBar() { println "This is aMethodBar." } @

void anotherFooMethod() { println "This is anotherFooMethod."

} @
void aSecondMethodBar() { println "This is aSecondMethodBar." } ®

then the following GPath expression will get the names of (1) and (3), but not (2) or (0):

assert ['aMethodBar', 'aSecondMethodBar'] as Set == this.class.methods.name.grep
(~/.*Bar/) as Set

Expression Deconstruction

We can decompose the expression this.class.methods.name.grep(~/.*Bar/) to get an idea of how a
GPath is evaluated:

this.class

property accessor, equivalent to this.getClass() in Java, yields a Class object.

this.class.methods

property accessor, equivalent to this.getClass().getMethods(), yields an array of Method objects.

this.class.methods.name

apply a property accessor on each element of an array and produce a list of the results.

160

this.class.methods.name.grep(-:+)

call method grep on each element of the list yielded by this.class.methods.name and produce a
list of the results.

A sub-expression like this.class.methods yields an array because this is what
WARNING calling this.get(Class().getMethods() in Java would produce. GPath expressions
do not have a convention where a s means a list or anything like that.

One powerful feature of GPath expression is that property access on a collection is converted to a

property access on each element of the collection with the results collected into a collection.
Therefore, the expression this.class.methods.name could be expressed as follows in Java:

List<String> methodNames = new ArraylList<String>();

for (Method method : this.getClass().getMethods()) {
methodNames.add(method.getName());

}

return methodNames;

Array access notation can also be used in a GPath expression where a collection is present :

assert 'aSecondMethodBar' == this.class.methods.name.grep(~/.*Bar/).sort()[1]

NOTE array access are zero-based in GPath expressions

GPath for XML navigation

Here is an example with an XML document and various form of GPath expressions:

def xmlText = """

| <root>

| <level>

| <sublevel id="1"'>

| <keyVal>

| <key>mykey</key>

| <value>value 123</value>
| </keyVal>

| </sublevel>

| <sublevel id='2"'>

| <keyVal>

| <key>anotherKey</key>

| <value>42</value>

| </keyVal>

| <keyVal>

| <key>mykey</key>

| <value>fizzbuzz</value>
| </keyVal>

| </sublevel>

161

| </level>
| </root>

def root = new XmlSlurper().parseText(xmlText.stripMargin())

assert root.level.size() == 1 @

assert root.level.sublevel.size() == 2 @

assert root.level.sublevel.findAll { it.@id == 1 }.size() == 1 ®
assert root.level.sublevel[1].keyVal[@].key.text() == 'anotherKey' @

@ There is one level node under root
@ There are two sublevel nodes under root/level
® There is one element sublevel having an attribute id with value 1

@ Text value of key element of first keyVal element of second sublevel element under root/level is
‘anotherKey'

Further details about GPath expressions for XML are in the XML User Guide.

Promotion and coercion

Number promotion

The rules of number promotion are specified in the section on math operations.

Closure to type coercion

Assigning a closure to a SAM type

A SAM type is a type which defines a single abstract method. This includes:

Functional interfaces

interface Predicate<T> {
boolean accept(T obj)

Abstract classes with single abstract method

abstract class Greeter {
abstract String getName()
void greet() {
println "Hello, $name"

}

Any closure can be converted into a SAM type using the as operator:

Predicate filter = { it.contains 'G' } as Predicate
assert filter.accept('Groovy') == true

162

Greeter greeter = { 'Groovy' } as Greeter
greeter.greet()

However, the as Type expression is optional since Groovy 2.2.0. You can omit it and simply write:

Predicate filter = { it.contains 'G"' }
assert filter.accept('Groovy') == true

Greeter greeter = { 'Groovy' }
greeter.greet()

which means you are also allowed to use method pointers, as shown in the following example:

boolean doFilter(String s) { s.contains('G") }

Predicate filter = this.&doFilter
assert filter.accept('Groovy') == true

Greeter greeter = GroovySystem.&getVersion
greeter.greet()

Calling a method accepting a SAM type with a closure

The second and probably more important use case for closure to SAM type coercion is calling a
method which accepts a SAM type. Imagine the following method:

public <T> List<T> filter(List<T> source, Predicate<T> predicate) {
source.findAll { predicate.accept(it) }
}

Then you can call it with a closure, without having to create an explicit implementation of the
interface:

assert filter(['Java', 'Groovy'], { it.contains 'G'} as Predicate) == ['Groovy']

But since Groovy 2.2.0, you are also able to omit the explicit coercion and call the method as if it
used a closure:

assert filter(['Java', 'Groovy']) { it.contains 'G'} == ['Groovy']
As you can see, this has the advantage of letting you use the closure syntax for method calls, that is

to say put the closure outside the parenthesis, improving the readability of your code.

163

Closure to arbitrary type coercion

In addition to SAM types, a closure can be coerced to any type and in particular interfaces. Let’s
define the following interface:

interface FooBar {
int foo()
void bar()

You can coerce a closure into the interface using the as keyword:

def impl = { println 'ok'; 123 } as FooBar

This produces a class for which all methods are implemented using the closure:

assert impl.foo() == 123
impl.bar()

But it is also possible to coerce a closure to any class. For example, we can replace the interface that
we defined with class without changing the assertions:

class FooBar {
int foo() {1}
void bar() { println 'bar' }

}
def impl = { println 'ok'; 123 } as FooBar

assert impl.foo() == 123
impl.bar()

Map to type coercion

Usually using a single closure to implement an interface or a class with multiple methods is not the
way to go. As an alternative, Groovy allows you to coerce a map into an interface or a class. In that
case, keys of the map are interpreted as method names, while the values are the method
implementation. The following example illustrates the coercion of a map into an Iterator:

def map
map = [
i: 10,

hasNext: { map.i > 0 },
next: { map.i-- },

]

164

def iter = map as Iterator

Of course this is a rather contrived example, but illustrates the concept. You only need to
implement those methods that are actually called, but if a method is called that doesn’t exist in the
map a MissingMethodException or an UnsupportedOperationException is thrown, depending on the
arguments passed to the call, as in the following example:

interface X {

void f()

void g(int n)

void h(String s, int n)
}

x = [f: {println "f called"}] as X

x.f() // method exists

x.g() // MissingMethodException here

x.g(5) // UnsupportedOperationException here

The type of the exception depends on the call itself:

* MissingMethodException if the arguments of the call do not match those from the interface/class

* UnsupportedOperationException if the arguments of the call match one of the overloaded methods
of the interface/class

String to enum coercion

Groovy allows transparent String (or GString) to enum values coercion. Imagine you define the
following enum:

enum State {

up,
down

then you can assign a string to the enum without having to use an explicit as coercion:

State st = 'up'
assert st == State.up

It is also possible to use a GString as the value:

def val = "up"
State st = "${vall}"
assert st == State.up

165

However, this would throw a runtime error (I1legalArqumentException):

State st = 'not an enum value'

Note that it is also possible to use implicit coercion in switch statements:

State switchState(State st) {
switch (st) {

case 'up':
return State.down // explicit constant
case 'down':

return 'up' // implicit coercion for return types

in particular, see how the case use string constants. But if you call a method that uses an enum with
a String argument, you still have to use an explicit as coercion:

assert switchState('up' as State) == State.down
assert switchState(State.down) == State.up

Custom type coercion

It is possible for a class to define custom coercion strategies by implementing the asType method.
Custom coercion is invoked using the as operator and is never implicit. As an example, imagine you
defined two classes, Polar and Cartesian, like in the following example:

class Polar {

double r
double phi
}
class Cartesian {
double x
double y
}

And that you want to convert from polar coordinates to cartesian coordinates. One way of doing
this is to define the asType method in the Polar class:

def asType(Class target) {
if (Cartesian==target) {
return new Cartesian(x: r*cos(phi), y: r*sin(phi))

}

166

which allows you to use the as coercion operator:

def sigma = 1E-16

def polar = new Polar(r:1.0,phi:PI/2)
def cartesian = polar as Cartesian
assert abs(cartesian.x-sigma) < sigma

Putting it all together, the Polar class looks like this:

class Polar {
double r
double phi
def asType(Class target) {
if (Cartesian==target) {
return new Cartesian(x: r*cos(phi), y: r*sin(phi))

}

but it is also possible to define asType outside of the Polar class, which can be practical if you want
to define custom coercion strategies for "closed" classes or classes for which you don’t own the
source code, for example using a metaclass:

Polar.metaClass.asType = { Class target ->
if (Cartesian==target) {
return new Cartesian(x: r*cos(phi), y: r*sin(phi))

}

Class literals vs variables and the as operator

Using the as keyword is only possible if you have a static reference to a class, like in the following
code:

interface Greeter {
void greet()
}

def greeter = { println 'Hello, Groovy!' } as Greeter // Greeter is known statically
greeter.greet()

But what if you get the class by reflection, for example by calling Class.forName?
Class clazz = Class.forName('Greeter')
Trying to use the reference to the class with the as keyword would fail:

167

greeter = { println 'Hello, Groovy!' } as clazz

// throws:

// unable to resolve class clazz

// @ line 9, column 40.

// greeter = { println 'Hello, Groovy!' } as clazz

It is failing because the as keyword only works with class literals. Instead, you need to call the
asType method:

greeter = { println 'Hello, Groovy!' }.asType(clazz)
greeter.greet()

Optionality

Optional parentheses

Method calls can omit the parentheses if there is at least one parameter and there is no ambiguity:

println "Hello World'
def maximum = Math.max 5, 10

Parentheses are required for method calls without parameters or ambiguous method calls:

println()
println(Math.max(5, 10))

Optional semicolons

In Groovy semicolons at the end of the line can be omitted, if the line contains only a single
statement.

This means that:
assert true;
can be more idiomatically written as:
assert true
Multiple statements in a line require semicolons to separate them:

boolean a = true; assert a

168

Optional return keyword

In Groovy, the last expression evaluated in the body of a method or a closure is returned. This
means that the return keyword is optional.

int add(int a, int b) {
return atb

}
assert add(1, 2) ==

Can be shortened to:

int add(int a, int b) {
a+b

}
assert add(1, 2) ==

Optional public keyword

By default, Groovy classes and methods are public. Therefore this class:

public class Server {
public String toString() { "a server" }

}

is identical to this class:

class Server {
String toString() { "a server" }

}

The Groovy Truth

Groovy decides whether an expression is true or false by applying the rules given below.

Boolean expressions

True if the corresponding Boolean value is true.

assert true
assert !false

Collections and Arrays

Non-empty Collections and arrays are true.

169

assert [1, 2, 3]
assert ![]

Matchers

True if the Matcher has at least one match.

assert ('a' =~ /a/)
assert !('a' =~ /b/)

Iterators and Enumerations

Iterators and Enumerations with further elements are coerced to true.

assert [0].iterator()

assert ![].iterator()

Vector v = [@] as Vector

Enumeration enumeration = v.elements()
assert enumeration
enumeration.nextElement()

assert !enumeration

Maps
Non-empty Maps are evaluated to true.

assert ['one' : 1]
assert ![:]

Strings

Non-empty Strings, GStrings and CharSequences are coerced to true.

assert 'a
assert !'"'

def nonEmpty = 'a'
assert "$nonEmpty"
def empty = "'
assert !"fempty"

Numbers

Non-zero numbers are true.

170

assert 1
assert 3.5
assert !0

Object References

Non-null object references are coerced to true.

assert new Object()
assert !null

Customizing the truth with asBoolean() methods

In order to customize whether groovy evaluates your object to true or false implement the
asBoolean() method:

class Color {
String name

boolean asBoolean(){
name == 'green' ? true : false

Groovy will call this method to coerce your object to a boolean value, e.g.:

assert new Color(name: 'green')
assert !new Color(name: 'red')

Typing
Optional typing

Optional typing is the idea that a program can work even if you don’t put an explicit type on a
variable. Being a dynamic language, Groovy naturally implements that feature, for example when
you declare a variable:

String aString = 'foo'
assert aString.toUpperCase()

®O

@ foo is declared using an explicit type, String

@ we can call the toUpperCase method on a String

Groovy will let you write this instead:

171

def aString = 'foo'
assert aString.toUpperCase()

®O

@ foo is declared using def
@ we can still call the toUpperCase method, because the type of aString is resolved at runtime

So it doesn’t matter that you use an explicit type here. It is in particular interesting when you
combine this feature with static type checking, because the type checker performs type inference.

Likewise, Groovy doesn’t make it mandatory to declare the types of a parameter in a method:

String concat(String a, String b) {
a+b

}

assert concat('foo', 'bar') == 'foobar'

can be rewritten using def as both return type and parameter types, in order to take advantage of
duck typing, as illustrated in this example:

def concat(def a, def b) { @D
a+b

}

assert concat('foo', 'bar') == 'foobar' @

assert concat(1,2) == 3 ®

@ both the return type and the parameter types use def
@ it makes it possible to use the method with String

® but also with int since the plus method is defined

Using the def keyword here is recommended to describe the intent of a method which
TIP is supposed to work on any type, but technically, we could use Object instead and the
result would be the same: def is, in Groovy, strictly equivalent to using Object.

Eventually, the type can be removed altogether from both the return type and the descriptor. But if
you want to remove it from the return type, you then need to add an explicit modifier for the
method, so that the compiler can make a difference between a method declaration and a method
call, like illustrated in this example:

private concat(a,b) { @
a+b

}

assert concat('foo', 'bar') == 'foobar' @)

assert concat(1,2) == ®

@ if we want to omit the return type, an explicit modifier has to be set.

172

@ it is still possible to use the method with String

® and also with int

Omitting types is in general considered a bad practice in method parameters or
method return types for public APIs. While using def in a local variable is not really a
problem because the visibility of the variable is limited to the method itself, while set
TIP on a method parameter, def will be converted to Object in the method signature,
making it difficult for users to know which is the expected type of the arguments. This
means that you should limit this to cases where you are explicitly relying on duck

typing.

Static type checking

By default, Groovy performs minimal type checking at compile time. Since it is primarily a dynamic
language, most checks that a static compiler would normally do aren’t possible at compile time. A
method added via runtime metaprogramming might alter a class or object’s runtime behavior. Let’s
illustrate why in the following example:

class Person { @)
String firstName
String lastName

}
def p = new Person(firstName: 'Raymond', lastName: 'Devos') @
assert p.formattedName == 'Raymond Devos' ©)

@ the Person class only defines two properties, firstName and lastName
@ we can create an instance of Person

® and call a method named formattedName

It is quite common in dynamic languages for code such as the above example not to throw any
error. How can this be? In Java, this would typically fail at compile time. However, in Groovy, it will
not fail at compile time, and if coded correctly, will also not fail at runtime. In fact, to make this
work at runtime, one possibility is to rely on runtime metaprogramming. So just adding this line
after the declaration of the Person class is enough:

Person.metaClass.getFormattedName = { "$delegate.firstName $delegate.lastName" }

This means that in general, in Groovy, you can’t make any assumption about the type of an object
beyond its declaration type, and even if you know it, you can’t determine at compile time what
method will be called, or which property will be retrieved. It has a lot of interest, going from
writing DSLs to testing, which is discussed in other sections of this manual.

However, if your program doesn’t rely on dynamic features and that you come from the static
world (in particular, from a Java mindset), not catching such "errors" at compile time can be
surprising. As we have seen in the previous example, the compiler cannot be sure this is an error.
To make it aware that it is, you have to explicitly instruct the compiler that you are switching to a

173

type checked mode. This can be done by annotating a class or a method with
@groovy.transform.TypeChecked.

When type checking is activated, the compiler performs much more work:
* type inference is activated, meaning that even if you use def on a local variable for example, the

type checker will be able to infer the type of the variable from the assignments

* method calls are resolved at compile time, meaning that if a method is not declared on a class,
the compiler will throw an error

* in general, all the compile time errors that you are used to find in a static language will appear:
method not found, property not found, incompatible types for method calls, number precision
errors, ...

In this section, we will describe the behavior of the type checker in various situations and explain
the limits of using @TypeChecked on your code.

The @TypeChecked annotation

Activating type checking at compile time

The groovy.transform.TypeChecked annotation enables type checking. It can be placed on a class:

@groovy.transform.TypeChecked
class Calculator {

int sum(int x, int y) { x+y }
}

Or on a method:

class Calculator {
@groovy.transform.TypeChecked
int sum(int x, int y) { x+y }

In the first case, all methods, properties, fields, inner classes, ... of the annotated class will be type
checked, whereas in the second case, only the method and potential closures or anonymous inner
classes that it contains will be type checked.

Skipping sections

The scope of type checking can be restricted. For example, if a class is type checked, you can
instruct the type checker to skip a method Dby annotating it with
@TypeChecked(TypeCheckingMode.SKIP):

import groovy.transform.TypeChecked
import groovy.transform.TypeCheckinglode

174

@TypeChecked ©)
class GreetingService {
String greeting() {
doGreet()
}

@TypeChecked(TypeCheckingMode . SKIP) ®
private String doGreet() {
def b = new SentenceBuilder()

b.Hello.my.name.is.John @
b
}
}
def s = new GreetingService()
assert s.greeting() == 'Hello my name is John'

@ the GreetingService class is marked as type checked
@ so the greeting method is automatically type checked
® but doGreet is marked with SKIP

@ the type checker doesn’t complain about missing properties here

In the previous example, SentenceBuilder relies on dynamic code. There’s no real Hello method or
property, so the type checker would normally complain and compilation would fail. Since the
method that uses the builder is marked with TypeCheckingMode.SKIP, type checking is skipped for this

method, so the code will compile, even if the rest of the class is type checked.

The following sections describe the semantics of type checking in Groovy.

Type checking assignments

An object o of type A can be assigned to a variable of type T if and only if:

* TequalsA

Date now = new Date()

* or Tis one of String, boolean, Boolean or Class

String s = new Date() // implicit call to toString

Boolean boxed = 'some string’ // Groovy truth
boolean prim = 'some string’ // Groovy truth
Class clazz = 'java.lang.String' // class coercion

* oroisnull and T is not a primitive type

String s = null // passes
int 1 = null // fails

* or T is an array and A is an array and the component type of A is assignable to the component
type of T

int[] i
int[] i

new int[4] // passes
new String[4] // fails

* or Tis an array and A is a collection or stream and the component type of A is assignable to the
component type of T

int[] i = [1,2,3] // passes
int[] i = [1,2, new Date()] // fails
Set set = [1,2,3]

Number[] na = set // passes
def stream = Arrays.stream(1,2,3)

int[] i = stream // passes

» or Tis asuperclass of A

AbstractList list = new ArrayList() // passes
LinkedList list = new ArraylList() // fails

* or Tis an interface implemented by A

List Tist = new ArrayList() // passes
RandomAccess 1list = new LinkedList() // fails

» or T or A are a primitive type and their boxed types are assignable

int i =0
Integer bi =1
int x = Integer.value0f(123)

176

double d = Float.valueOf(5f)

* or T extends groovy.lang.Closure and A is a SAM-type (single abstract method type)

Runnable r = { println 'Hello' }

interface SAMType {
int doSomething()

}

SAMType sam = { 123 }

assert sam.doSomething() == 123

abstract class AbstractSAM {
int cale() { 2* value() }
abstract int value()

}

AbstractSAM ¢ = { 123 }

assert c.calc() == 246

* or T and A derive from java.lang.Number and conform to the following table

Table 7. Number types (java.lang.XXX)

T A

Double Any but BigDecimal or
BigInteger

Float Any type but
BigDecimal, BigIinteger
or Double

Long Any type but

BigDecimal, BigInteger,
Double or Float

Examples
Double d1 = 4d
Double d2 = 4f
Double d3 = 41
Double d4 = 4i
Double d5 = (short) 4
Double d6 = (byte) 4
Float f1 = 4f
Float f2 = 41
Float f3 = 41
Float f4 = (short) 4

Float f5 = (byte) 4

Long 11 = 41
Long 12 = 4i
Long 13 = (short) 4
Long 14 = (byte) 4

177

T A Examples

Integer Any type but _ .
BigDecimal, BigInteger, Integer 1'1 = 4
Double, Float or Long Integer 1_2 = (short) 4

Integer i3 = (byte) 4

Short Any type but
BigDecimal, BigInteger, Short s1 = (short) 4
Double, Float, Long or Short s2 = (byte) 4
Integer

Byte Byte

Byte b1 = (byte) 4

List and map constructors

In addition to the assignment rules above, if an assignment is deemed invalid, in type checked
mode, a list literal or a map literal A can be assigned to a variable of type T if:

 the assignment is a variable declaration and A is a list literal and T has a constructor whose
parameters match the types of the elements in the list literal

* the assignment is a variable declaration and A is a map literal and T has a no-arg constructor
and a property for each of the map keys

For example, instead of writing:

@groovy.transform.TupleConstructor
class Person {

String firstName

String lastName
}

Person classic = new Person('Ada', 'Lovelace')

You can use a "list constructor":

Person list = ['Ada’', 'Lovelace']

or a "map constructor":

Person map = [firstName:'Ada', lastName:'Lovelace']

If you use a map constructor, additional checks are done on the keys of the map to check if a
property of the same name is defined. For example, the following will fail at compile time:

@groovy.transform.TupleConstructor
class Person {

178

String firstName
String lastName
}

Person map = [firstName:'Ada', lastName:'Lovelace', age: 24] D

@ The type checker will throw an error No such property: age for class: Person at compile time

Method resolution

In type checked mode, methods are resolved at compile time. Resolution works by name and
arguments. The return type is irrelevant to method selection. Types of arguments are matched
against the types of the parameters following those rules:

An argument o of type A can be used for a parameter of type T if and only if:

* TequalsA

int sum(int x, int y) {
X+y
ks

assert sum(3,4) == 7

e orTisaStringand Ais a GString

String format(String str) {
"Result: $str"

}
assert format("${3+4}") == "Result: 7"

* oroisnull and T is not a primitive type

String format(int value) {
"Result: $value"

+
assert format(7) == "Result: 7"
format(null) // fails

* or Tis an array and A is an array and the component type of A is assignable to the component
type of T

String format(String[] values) {

179

"Result: ${values.join(' ")}"

}
assert format(['a','b'] as String[]) == "Result: a b"
format([1,2] as int[]) // fails

* or T1is asuperclass of A

String format(AbstractlList list) {
list.join(',")

}

format(new ArrayList()) // passes

String format(LinkedList list) {
list.join(',")

}

format(new ArrayList()) // fails

» or Tis an interface implemented by A

String format(List list) {
list.join(',")

}
format(new ArrayList()) // passes
String format(RandomAccess list) {
"foo'
}
format(new LinkedList()) // fails

* or T or A are a primitive type and their boxed types are assignable

int sum(int x, Integer y) {
X+y
}
assert sum(3, new Integer(4)) ==
assert sum(new Integer(3), 4) ==
assert sum(new Integer(3), new Integer(4)) == 7
assert sum(new Integer(3), 4) ==

* or T extends groovy.lang.Closure and A is a SAM-type (single abstract method type)

interface SAMType {

180

int doSomething()
}
int twice(SAMType sam) { 2*sam.doSomething() }
assert twice { 123 } == 246
abstract class AbstractSAM {
int cale() { 2* value() }
abstract int value()

+
int eightTimes(AbstractSAM sam) { 4*sam.calc() }
assert eightTimes { 123 } == 984

* or T and A derive from java.lang.Number and conform to the same rules as assignment of
numbers

If a method with the appropriate name and arguments is not found at compile time, an error is
thrown. The difference with "normal" Groovy is illustrated in the following example:

class MyService {
void doSomething() {
printLine 'Do something' ©)

}

@ printLine is an error, but since we’re in a dynamic mode, the error is not caught at compile time

The example above shows a class that Groovy will be able to compile. However, if you try to create
an instance of MyService and call the doSomething method, then it will fail at runtime, because
printLine doesn’t exist. Of course, we already showed how Groovy could make this a perfectly valid
call, for example by catching MethodMissingException or implementing a custom metaclass, but if
you know you’re not in such a case, @TypeChecked comes handy:

@groovy.transform.TypeChecked
class MyService {
void doSomething() {
printLine 'Do something' ©)

}

@ printLine is this time a compile-time error

Just adding @TypeChecked will trigger compile time method resolution. The type checker will try to
find a method printLine accepting a String on the MyService class, but cannot find one. It will fail
compilation with the following message:

Cannot find matching method MyService#fprintlLine(java.lang.String)

IMPORTANT It is important to understand the logic behind the type checker: it is a

181

compile-time check, so by definition, the type checker is not aware of
any kind of runtime metaprogramming that you do. This means that
code which is perfectly valid without @TypeChecked will not compile
anymore if you activate type checking. This is in particular true if you
think of duck typing:

class Duck {

void quack() { ©)
println 'Quack!'

}
}
class QuackingBird {
void quack() { @
println 'Quack!'
}
}

@groovy.transform.TypeChecked
void accept(quacker) {
quacker.quack() ©)

}
accept(new Duck()) @

@ we define a Duck class which defines a quack method
@ we define another QuackingBird class which also defines a quack method

® quacker is loosely typed, so since the method is @TypeChecked, we will obtain a compile-time
error

@ even if in non type-checked Groovy, this would have passed

There are possible workarounds, like introducing an interface, but basically, by activating type
checking, you gain type safety but you loose some features of the language. Hopefully, Groovy
introduces some features like flow typing to reduce the gap between type-checked and non
type-checked Groovy.

Type inference

Principles

When code is annotated with @TypeChecked, the compiler performs type inference. It doesn’t simply
rely on static types, but also uses various techniques to infer the types of variables, return types,
literals, ... so that the code remains as clean as possible even if you activate the type checker.

The simplest example is inferring the type of a variable:

def message = 'Welcome to Groovy!' ©)
println message.toUpperCase() @
println message.upper() // compile time error @&

182

@ a variable is declared using the def keyword
@ calling toUpperCase is allowed by the type checker
® calling upper will fail at compile time

The reason the call to toUpperCase works is because the type of message was inferred as being a
String.

Variables vs fields in type inference

It is worth noting that although the compiler performs type inference on local variables, it does not
perform any kind of type inference on fields, always falling back to the declared type of a field. To
illustrate this, let’s take a look at this example:

class SomeClass {
def someUntypedField

@
String someTypedField
@
void someMethod() {
someUntypedField = '123'
®
someUntypedField = someUntypedField.toUpperCase() // compile-time error
@
}
void someSafeMethod() {
someTypedField = '123'
someTypedField = someTypedField.toUpperCase()
®
}
void someMethodUsinglLocalVariable() {
def localVariable = '123'
@
someUntypedField = localVariable.toUpperCase()
®
}
}

@ someUntypedField uses def as a declaration type

@ someTypedField uses String as a declaration type

® we can assign anything to someUntypedField

@ yet calling toUpperCase fails at compile time because the field is not typed properly

® we can assign a String to a field of type String

183

® and this time toUpperCase is allowed
@ if we assign a String to a local variable

then calling toUpperCase is allowed on the local variable

Why such a difference? The reason is thread safety. At compile time, we can’t make any guarantee
about the type of a field. Any thread can access any field at any time and between the moment a
field is assigned a variable of some type in a method and the time is used the line after, another
thread may have changed the contents of the field. This is not the case for local variables: we know
if they "escape" or not, so we can make sure that the type of a variable is constant (or not) over
time. Note that even if a field is final, the JVM makes no guarantee about it, so the type checker
doesn’t behave differently if a field is final or not.

This is one of the reasons why we recommend to use typed fields. While using def for
TIP local variables is perfectly fine thanks to type inference, this is not the case for fields,
which also belong to the public API of a class, hence the type is important.

Collection literal type inference

Groovy provides a syntax for various type literals. There are three native collection literals in
Groovy:

* lists, using the [] literal

* maps, using the [:] literal

* ranges, using from..to (inclusive), from..<to (right exclusive),from<..to (left exclusive) and

from<..<to (full exclusive)

The inferred type of a literal depends on the elements of the literal, as illustrated in the following
table:

Literal Inferred type
java.util.List
def list = []
java.util.List<String>
def list = ['foo', 'bar']
_) . . java.util.List<GString> be careful, a GString is not a
def list = ["${foo}","${bar}"] String
java.util.LinkedHashMap
def map = [:]

java.util.LinkedHashMap<String,String>
def map1 = [someKey:
"someValue']
def map2 = ['someKey':
"someValue']

184

Literal Inferred type

java.util.LinkedHashMap<GString,String> be careful, the

def map = ["${someKey}": key is a GString!

"someValue']

groovy.lang.IntRange
def intRange = (0..10)

groovy.lang.Range<String> : uses the type of the bounds to
infer the component type of the range

def charRange = ('a'.."'z")

As you can see, with the noticeable exception of the IntRange, the inferred type makes use of
generics types to describe the contents of a collection. In case the collection contains elements of
different types, the type checker still performs type inference of the components, but uses the
notion of least upper bound.

Least upper bound

In Groovy, the least upper bound of two types A and B is defined as a type which:

* superclass corresponds to the common super class of A and B
* interfaces correspond to the interfaces implemented by both A and B

 if Aor B is a primitive type and that A isn’t equal to B, the least upper bound of A and B is the least
upper bound of their wrapper types

If A and B only have one (1) interface in common and that their common superclass is Object, then
the LUB of both is the common interface.

The least upper bound represents the minimal type to which both A and B can be assigned. So for
example, if A and B are both String, then the LUB (least upper bound) of both is also String.

class Top {}
class Bottom1 extends Top {}
class Bottom2 extends Top {}

assert leastUpperBound(String, String) == String

assert leastUpperBound(ArraylList, LinkedList) == AbstractlList
assert leastUpperBound(ArraylList, List) == List

assert leastUpperBound(List, List) == List

assert leastUpperBound(Bottom1, Bottom2) == Top

assert leastUpperBound(List, Serializable) == Object

CYCRCKCAORS)

@ the LUB of String and String is String
@ the LUB of ArraylList and LinkedList is their common super type, AbstractList
® the LUB of ArrayList and List is their only common interface, List

@ the LUB of two identical interfaces is the interface itself

185

® the LUB of Bottom1 and Bottom?2 is their superclass Top

® the LUB of two types which have nothing in common is Object

In those examples, the LUB is always representable as a normal, JVM supported, type. But Groovy
internally represents the LUB as a type which can be more complex, and that you wouldn’t be able
to use to define a variable for example. To illustrate this, let’s continue with this example:

interface Foo {}

class Top {}

class Bottom extends Top implements Serializable, Foo {}
class SerializableFooImpl implements Serializable, Foo {}

What is the least upper bound of Bottom and SerializableFooImpl? They don’t have a common super
class (apart from Object), but they do share 2 interfaces (Serializable and Foo), so their least upper
bound is a type which represents the union of two interfaces (Serializable and Foo). This type
cannot be defined in the source code, yet Groovy knows about it.

In the context of collection type inference (and generic type inference in general), this becomes
handy, because the type of the components is inferred as the least upper bound. We can illustrate
why this is important in the following example:

interface Greeter { void greet() }
interface Salute { void salute() }

XS

class A implements Greeter, Salute { ®
void greet() { println "Hello, I'm A!" }
void salute() { println "Bye from A!" }

+

class B implements Greeter, Salute {
void greet() { println "Hello, I'm B!" }
void salute() { println "Bye from B!" }
void exit() { println 'No way!' }

®

+
def list = [new A(), new B()]
list.each {

it.greet()

it.salute()

it.exit()

©® © O

@ the Greeter interface defines a single method, greet

@ the Salute interface defines a single method, salute

® class A implements both Greeter and Salute but there’s no explicit interface extending both
@ same for B

® but B defines an additional exit method

186

® the type of list is inferred as "list of the LUB of Aand "B™"

@ so it is possible to call greet which is defined on both A and B through the Greeter interface

and it is possible to call salute which is defined on both A and B through the Salute interface

© yet calling exit is a compile time error because it doesn’t belong to the LUB of A and B (only

defined in B)

The error message will look like:

[Static type checking] - Cannot find matching method Greeter or Salutef#exit()

which indicates that the exit method is neither defines on Greeter nor Salute, which are the two
interfaces defined in the least upper bound of A and B.

instanceof inference

In normal, non type checked, Groovy, you can write things like:

class Greeter {
String greeting() { 'Hello' }

}

void doSomething(def o) {
if (o instanceof Greeter) { @
println o.greeting() @

}
}

doSomething(new Greeter())

@ guard the method call with an instanceof check

@ make the call

The method call works because of dynamic dispatch (the method is selected at runtime). The
equivalent code in Java would require to cast o to a Greeter before calling the greeting method,
because methods are selected at compile time:

if (o instanceof Greeter) {
System.out.println(((Greeter)o).greeting());
}

However, in Groovy, even if you add @TypeChecked (and thus activate type checking) on the
doSomething method, the cast is not necessary. The compiler embeds instanceof inference that makes
the cast optional.

187

Flow typing

Flow typing is an important concept of Groovy in type checked mode and an extension of type
inference. The idea is that the compiler is capable of inferring the type of variables in the flow of
the code, not just at initialization:

@groovy.transform.TypeChecked
void flowTyping() {

def o = 'foo'
o.toUpperCase()
9d
Math.sqrt(o)

®OE

@ first, o is declared using def and assigned a String

@ the compiler inferred that o is a String, so calling toUpperCase is allowed

® o is reassigned with a double

@ calling Math.sqrt passes compilation because the compiler knows that at this point, o is a double

So the type checker is aware of the fact that the concrete type of a variable is different over time. In
particular, if you replace the last assignment with:

o =9d
o.toUpperCase()

The type checker will now fail at compile time, because it knows that o is a double when toUpperCase
is called, so it’s a type error.

It is important to understand that it is not the fact of declaring a variable with def that triggers type
inference. Flow typing works for any variable of any type. Declaring a variable with an explicit
type only constrains what you can assign to the variable:

@groovy.transform.TypeChecked
void flowTypingWithExplicitType() {

List list = ['a','b","'c"] ®
list = list*.toUpperCase() @
list = 'foo'

® 1ist is declared as an unchecked List and assigned a list literal of strings

@ this line passes compilation because of flow typing: the type checker knows that 1ist is at this
point an ArrayList<String>

@ but you can’t assign a String to a List so this is a type checking error

You can also note that even if the variable is declared without generics information, the type
checker knows what is the component type. Therefore, such code would fail compilation:

188

@groovy.transform.TypeChecked
void flowTypingTypeConstraints1() {

def list = ['a','b","'c'] O)
list.add(1) @)

by

@groovy.transform.TypeChecked

void flowTypingTypeConstraints2() {
List<?> Tist = [] ®
list.addA11(['a','b",'c']) @
list.add(1) ®

® 1ist is inferred as ArraylList<String>
@ so adding an int to a ArrayList<String> is a compile-time error
® list is declared as List<?>

@ the inferred type of list here is List<capture-of ?>, so calling addA11 with a list of anything is a
compile-time error

® and calling add with an int is also a compile-time error for the same reason; only add(null) is
allowed

Fixing this requires adding an explicit, non-wildcard type argument:

@groovy.transform.TypeChecked

void flowTypingTypeConstraints3() {
List<Serializable> list = [] @
list.addA11(['a",'b",'c"']) @
list.add(1)

@ 1ist is declared as List<Serializable> and initialized with an empty list
@ elements added to the list conform to the declaration type of the list

® and adding an integer is allowed

Flow typing has been introduced to reduce the difference in semantics between classic and static
Groovy. In particular, consider the behavior of this code in Java:

public Integer compute(String str) {
return str.length();

¥

public String compute(Object o) {
return "Nope";

}

/] ...

Object string = "Some string";

Object result = compute(string);

® O

189

System.out.println(result); ®

® o is declared as an Object and assigned a String
@ we call the compute method with o

® and print the result

In Java, this code will output Nope, because method selection is done at compile time and based on
the declared types. So even if o is a String at runtime, it is still the Object version which is called,
because o has been declared as an Object. To be short, in Java, declared types are most important,
be it variable types, parameter types or return types.

In Groovy, we could write:

int compute(String string) { string.length() }
String compute(Object o) { "Nope" }

Object o = 'string’

def result = compute(o)

println result

But this time, it will return 6, because the method which is chosen at runtime, based on the actual
argument types. So at runtime, o is a String so the String variant is used. Note that this behavior has
nothing to do with type checking, it’s the way Groovy works in general: dynamic dispatch.

In type checked Groovy, we want to make sure the type checker selects the same method at
compile time, that the runtime would choose. It is not possible in general, due to the semantics of
the language, but we can make things better with flow typing. With flow typing, o is inferred as a
String when the compute method is called, so the version which takes a String and returns an int is
chosen. This means that we can infer the return type of the method to be an int, and not a String.
This is important for subsequent calls and type safety.

So in type checked Groovy, flow typing is a very important concept, which also implies that if
@TypeChecked is applied, methods are selected based on the inferred types of the arguments, not on
the declared types. This doesn’t ensure 100% type safety, because the type checker may select a
wrong method, but it ensures the closest semantics to dynamic Groovy.

Advanced type inference

A combination of flow typing and least upper bound inference is used to perform advanced type
inference and ensure type safety in multiple situations. In particular, program control structures
are likely to alter the inferred type of a variable:

class Top {
void methodFromTop() {}

}

class Bottom extends Top {
void methodFromBottom() {}

}
def o

190

if (someCondition) {
o = new Top()
} else {
0 = new Bottom()
+
o.methodFromTop()
o.methodFromBottom() // compilation error

®O@ © ©

@ if someCondition is true, o is assigned a Top
@ if someCondition is false, o is assigned a Bottom
® calling methodFromTop is safe

@ but calling methodFromBottom is not, so it’s a compile time error

When the type checker visits an if/else control structure, it checks all variables which are assigned
in if/else branches and computes the least upper bound of all assignments. This type is the type of
the inferred variable after the if/else block, so in this example, o is assigned a Top in the if branch
and a Bottom in the else branch. The LUB of those is a Top, so after the conditional branches, the
compiler infers o as being a Top. Calling methodFromTop will therefore be allowed, but not
methodFromBottom.

The same reasoning exists with closures and in particular closure shared variables. A closure
shared variable is a variable which is defined outside of a closure, but used inside a closure, as in
this example:

def text = 'Hello, world!' ©)
def closure = {
println text

@M a variable named text is declared

@ text is used from inside a closure. It is a closure shared variable.

Groovy allows developers to use those variables without requiring them to be final. This means that
a closure shared variable can be reassigned inside a closure:

String result

doSomething { String it ->
result = "Result: $it"

}

result = result?.toUpperCase()

The problem is that a closure is an independent block of code that can be executed (or not) at any
time. In particular, doSomething may be asynchronous, for example. This means that the body of a
closure doesn’t belong to the main control flow. For that reason, the type checker also computes, for
each closure shared variable, the LUB of all assignments of the variable, and will use that LUB as the
inferred type outside of the scope of the closure, like in this example:

191

class Top {
void methodFromTop() {}
+
class Bottom extends Top {
void methodFromBottom() {}
}
def o = new Top()
Thread.start {
0 = new Bottom()
}
o.methodFromTop()
o.methodFromBottom() // compilation error

®O@ © ©

@ a closure-shared variable is first assigned a Top

@ inside the closure, it is assigned a Bottom

® methodFromTop is allowed

@ methodFromBottom is a compilation error

Here, it is clear that when methodFromBottom is called, there’s no guarantee, at compile-time or
runtime that the type of o will effectively be a Bottom. There are chances that it will be, but we can’t

make sure, because it’s asynchronous. So the type checker will only allow calls on the least upper
bound, which is here a Top.

Closures and type inference

The type checker performs special inference on closures, resulting on additional checks on one side
and improved fluency on the other side.

Return type inference

The first thing that the type checker is capable of doing is inferring the return type of a closure. This
is simply illustrated in the following example:

@groovy.transform.TypeChecked

int testClosureReturnTypeInference(String arg) {
def cl = { "Arg: $arg" }
def val = cl1()

® O

val.length()

@ a closure is defined, and it returns a string (more precisely a GString)
@ we call the closure and assign the result to a variable

@ the type checker inferred that the closure would return a string, so calling length() is allowed

As you can see, unlike a method which declares its return type explicitly, there’s no need to declare
the return type of a closure: its type is inferred from the body of the closure.

192

Closures vs methods

It’s worth noting that return type inference is only applicable to closures. While the type
checker could do the same on a method, it is in practice not desirable: in general, methods can
be overridden and it is not statically possible to make sure that the method which is called is
not an overridden version. So flow typing would actually think that a method returns
something, while in reality, it could return something else, like illustrated in the following
example:

@TypeChecked
class A {
def compute() { 'some string' })
def computeFully() {
compute().toUpperCase()
}
}
@TypeChecked
class B extends A {
def compute() { 123 } ©)

@ class A defines a method compute which effectively returns a String

@ this will fail compilation because the return type of compute is def(aka Object)

® class B extends A and redefines compute, this type returning an int

As you can see, if the type checker relied on the inferred return type of a method, with flow
typing, the type checker could determine that it is ok to call toUpperCase. It is in fact an error,
because a subclass can override compute and return a different object. Here, Bffcompute returns
an int, so someone calling computeFully on an instance of B would see a runtime error. The

compiler prevents this from happening by using the declared return type of methods instead
of the inferred return type.

For consistency, this behavior is the same for every method, even if they are static or final.

Parameter type inference

In addition to the return type, it is possible for a closure to infer its parameter types from the
context. There are two ways for the compiler to infer the parameter types:

 through implicit SAM type coercion

* through API metadata

To illustrate this, lets start with an example that will fail compilation due to the inability for the
type checker to infer the parameter types:

class Person {

193

String name

int age
}
void inviteIf(Person p, Closure<Boolean> predicate) { ©)
if (predicate.call(p)) {
// send invite
/] ...
}
+

@groovy.transform.TypeChecked
void failCompilation() {
Person p = new Person(name: 'Gerard', age: 55)
inviteIf(p) {
it.age >= 18 // No such property: age

CXS)

}

@ the inviteIf method accepts a Person and a Closure

@ we call it with a Person and a Closure

® yet it is not statically known as being a Person and compilation fails

In this example, the closure body contains it.age. With dynamic, not type checked code, this would

work, because the type of it would be a Person at runtime. Unfortunately, at compile-time, there’s
no way to know what is the type of it, just by reading the signature of invitelf.

Explicit closure parameters

To be short, the type checker doesn’t have enough contextual information on the inviteIf method
to determine statically the type of it. This means that the method call needs to be rewritten like
this:

inviteIf(p) { Person it -> @
it.age >= 18
}

@ the type of it needs to be declared explicitly

By explicitly declaring the type of the it variable, you can work around the problem and make this
code statically checked.

Parameters inferred from single-abstract method types

For an API or framework designer, there are two ways to make this more elegant for users, so that
they don’t have to declare an explicit type for the closure parameters. The first one, and easiest, is
to replace the closure with a SAM type:

194

interface Predicate<On> { boolean apply(On e) }

void inviteIf(Person p, Predicate<Person> predicate) { @
if (predicate.apply(p)) {
// send invite
/] ...

@groovy.transform.TypeChecked
void passesCompilation() {
Person p = new Person(name: 'Gerard', age: 55)

inviteIf(p) {
it.age >= 18

® @

}

@ declare a SAM interface with an apply method
@ invitelf now uses a Predicate<Person> instead of a Closure<Boolean>
® there’s no need to declare the type of the it variable anymore

@ it.age compiles properly, the type of it is inferred from the Predicatef#fapply method signature

By using this technique, we leverage the automatic coercion of closures to SAM types
feature of Groovy. Whether you should use a SAM type or a Closure really depends on
what you need to do. In a lot of cases, using a SAM interface is enough, especially if
you consider functional interfaces as they are found in Java 8. However, closures
TIP provide features that are not accessible to functional interfaces. In particular, closures
can have a delegate, and owner and can be manipulated as objects (for example,
cloned, serialized, curried, ...) before being called. They can also support multiple
signatures (polymorphism). So if you need that kind of manipulation, it is preferable
to switch to the most advanced type inference annotations which are described below.

The original issue that needs to be solved when it comes to closure parameter type inference, that is
to say, statically determining the types of the arguments of a closure without having to have them
explicitly declared, is that the Groovy type system inherits the Java type system, which is
insufficient to describe the types of the arguments.

The @ClosureParams annotation

Groovy provides an annotation, @ClosureParams which is aimed at completing type information. This
annotation is primarily aimed at framework and API developers who want to extend the
capabilities of the type checker by providing type inference metadata. This is important if your
library makes use of closures and that you want the maximum level of tooling support too.

Let’s illustrate this by fixing the original example, introducing the @ClosureParams annotation:

195

import groovy.transform.stc.ClosureParams
import groovy.transform.stc.FirstParam
void inviteIf(Person p, @ClosureParams(FirstParam) Closure<Boolean> predicate) {
@
if (predicate.call(p)) {
// send invite

/...
}
}
inviteIf(p) { @
it.age >= 18
}

@ the closure parameter is annotated with @ClosureParams

@ it’s not necessary to use an explicit type for it, which is inferred

The @ClosureParams annotation minimally accepts one argument, which is named a type hint. A type
hint is a class which is responsible for completing type information at compile time for the closure.
In this example, the type hint being used is groovy.transform.stc.FirstParam which indicated to the
type checker that the closure will accept one parameter whose type is the type of the first
parameter of the method. In this case, the first parameter of the method is Person, so it indicates to
the type checker that the first parameter of the closure is in fact a Person.

A second optional argument is named options. Its semantics depend on the type hint class. Groovy
comes with various bundled type hints, illustrated in the table below:

Table 8. Predefined type hints

196

Type hint Polymorphic? Description and examples

FirstParam No The first (resp. second, third) parameter type of the method
SecondParam

ThirdParam import groovy.transform.stc.FirstParam

void doSomething(String str, @ClosureParams(FirstParam)
Closure c) {
c(str)
}
doSomething('foo') { println it.toUpperCase() }

import groovy.transform.stc.SecondParam

void withHash(String str, int seed, @ClosureParams

(SecondParam) Closure c) {
c¢(31*str.hashCode()+seed)

+

withHash('foo', (int)System.currentTimeMillis()) {
int mod = it%2

}

import groovy.transform.stc.ThirdParam

String format(String prefix, String postfix, String o,

@ClosureParams(ThirdParam) Closure c) {
"$prefix${c(o)}$postfix"

+

assert format('foo', 'bar', 'baz') {
it.toUpperCase()

} == 'fooBAZbar'

FirstParam.Fir No The first generic type of the first (resp. second, third) parameter
stGenericType of the method
SecondParam.Fi
rstGenericType . .
. . import groovy.transform.stc.FirstParam
ThirdParam.Fir . : . . .
stGenericType public <T> void doSomething(List<T> strings,
@ClosureParams(FirstParam.FirstGenericType) Closure c)
{
strings.each {
c(it)
}
}

doSomething(['foo', 'bar']) { println it.toUpperCase() }
doSomething([1,2,3]) { println(2*it) }

Variants for SecondGenericType and ThirdGenericType exist for all
FirstParam, SecondParam and ThirdParam type hints.

197

Type hint Polymorphic? Description and examples

SimpleType No

MapEntryOrKeyV yes
alue

198

A type hint for which the type of closure parameters comes from
the options string.

import groovy.transform.stc.SimpleType
public void doSomething(@ClosureParams(value=
SimpleType,options=["'java.lang.String","int']) Closure
c) {

c('foo',3)
¥
doSomething { str, len ->

assert str.length() == len

}

This type hint supports a single signature and each of the
parameter is specified as a value of the options array using a
fully-qualified type name or a primitive type.

A dedicated type hint for closures that either work on a Map.Entry
single parameter, or two parameters corresponding to the key
and the value.

import groovy.transform.stc.MapEntryOrKeyValue

public <K,V> void doSomething(Map<K,V> map,

@ClosureParams(MapEntryOrKeyValue) Closure c) {
/] ...

}
doSomething([a: 'A']) { k,v ->
assert k.toUpperCase() == v.toUpperCase()

}
doSomething([abc: 3]) { e ->
assert e.key.length() == e.value

}

This type hint requires that the first argument is a Map type, and
infers the closure parameter types from the map actual
key/value types.

Type hint Polymorphic? Description and examples

FromAbstractTy Yes Infers closure parameter types from the abstract method of some
peMethods type. A signature is inferred for each abstract method.

import groovy.transform.stc.FromAbstractTypeMethods
abstract class Foo {
abstract void firstSignature(int x, int y)
abstract void secondSignature(String str)

}
void doSomething(@ClosureParams(value
=FromAbstractTypeMethods, options=["Foo"]) Closure cl)

{
/] ...

}
doSomething { a, b -> a+b }
doSomething { s -> s.toUpperCase() }

If there are multiple signatures like in the example above, the
type checker will only be able to infer the types of the arguments
if the arity of each method is different. In the example above,
firstSignature takes 2 arguments and secondSignature takes 1
argument, so the type checker can infer the argument types
based on the number of arguments. But see the optional resolver
class attribute discussed next.

199

Type hint

FromString

TIP

200

Polymorphic? Description and examples

Yes

Infers the closure parameter types from the options argument.
The options argument consists of an array of comma-separated
non-primitive types. Each element of the array corresponds to a
single signature, and each comma in an element separate
parameters of the signature. In short, this is the most generic
type hint, and each string of the options map is parsed as if it
was a signature literal. While being very powerful, this type hint
must be avoided if you can because it increases the compilation
times due to the necessity of parsing the type signatures.

A single signature for a closure accepting a String:

import groovy.transform.stc.FromString

void doSomething(@ClosureParams(value=FromString,

options=["String","String,Integer"]) Closure cl) {
/] ...

}

doSomething { s -> s.toUpperCase() }

doSomething { s,i -> s.toUpperCase()*i }

A polymorphic closure, accepting either a String or a String,
Integer:

import groovy.transform.stc.FromString

void doSomething(@ClosureParams(value=FromString,

options=["String","String,Integer"]) Closure cl) {
/] ...

}

doSomething { s -> s.toUpperCase() }

doSomething { s,i -> s.toUpperCase()*i }

A polymorphic closure, accepting either a T or a pair T, T:

import groovy.transform.stc.FromString
public <T> void doSomething(T e, @ClosureParams(value
=FromString, options=["T","T,T"]) Closure cl) {

/] ...
+
doSomething('foo') { s -> s.toUpperCase() }
doSomething('foo') { s1,s2 -> assert s1.toUpperCase()
== s2.toUpperCase() }

Even though you use FirstParam, SecondParam or ThirdParam as a type hint, it doesn’t
strictly mean that the argument which will be passed to the closure will be the first

(resp. second, third) argument of the method call. It only means that the type of the
parameter of the closure will be the same as the type of the first (resp. second, third)
argument of the method call.

In short, the lack of the @ClosureParams annotation on a method accepting a Closure will not fail
compilation. If present (and it can be present in Java sources as well as Groovy sources), then the
type checker has more information and can perform additional type inference. This makes this
feature particularly interesting for framework developers.

A third optional argument is named conflictResolutionStrategy. It can reference a class (extending
from ClosureSignatureConflictResolver) that can perform additional resolution of parameter types
if more than one are found after initial inference calculations are complete. Groovy comes with a
default type resolver which does nothing, and another which selects the first signature if multiple
are found. The resolver is only invoked if more than one signature is found and is by design a post
processor. Any statements which need injected typing information must pass one of the parameter
signatures determined through type hints. The resolver then picks among the returned candidate
signatures.

@DelegatesTo

The @DelegatesTo annotation is used by the type checker to infer the type of the delegate. It allows
the API designer to instruct the compiler what is the type of the delegate and the delegation
strategy. The @DelegatesTo annotation is discussed in a specific section.

Static compilation

Dynamic vs static

In the type checking section, we have seen that Groovy provides optional type checking thanks to
the @TypeChecked annotation. The type checker runs at compile time and performs a static analysis
of dynamic code. The program will behave exactly the same whether type checking has been
enabled or not. This means that the @TypeChecked annotation is neutral in regard to the semantics of
a program. Even though it may be necessary to add type information in the sources so that the
program is considered type safe, in the end, the semantics of the program are the same.

While this may sound fine, there is actually one issue with this: type checking of dynamic code,
done at compile time, is by definition only correct if no runtime specific behavior occurs. For
example, the following program passes type checking:

class Computer {
int compute(String str) {
str.length()
Iy
String compute(int x) {
String.valueOf(x)
}

@groovy.transform.TypeChecked
void test() {

201

core-domain-specific-languages.html#section-delegatesto

def computer = new Computer()
computer.with {
assert compute(compute('foobar')) =='6"

}

There are two compute methods. One accepts a String and returns an int, the other accepts an int
and returns a String. If you compile this, it is considered type safe: the inner compute('foobar") call
will return an int, and calling compute on this int will in turn return a String.

Now, before calling test(), consider adding the following line:

Computer.metaClass.compute = { String str -> new Date() }

Using runtime metaprogramming, we’re actually modifying the behavior of the compute(String)
method, so that instead of returning the length of the provided argument, it will return a Date. If
you execute the program, it will fail at runtime. Since this line can be added from anywhere, in any
thread, there’s absolutely no way for the type checker to statically make sure that no such thing
happens. In short, the type checker is vulnerable to monkey patching. This is just one example, but
this illustrates the concept that doing static analysis of a dynamic program is inherently wrong.

The Groovy language provides an alternative annotation to @TypeChecked which will actually make
sure that the methods which are inferred as being called will effectively be called at runtime. This
annotation turns the Groovy compiler into a static compiler, where all method calls are resolved
at compile time and the generated bytecode makes sure that this happens: the annotation is
@groovy.transform.CompileStatic.

The @CompileStatic annotation

The @CompileStatic annotation can be added anywhere the @TypeChecked annotation can be used,
that is to say on a class or a method. It is not necessary to add both @TypeChecked and @CompileStatic,
as @CompileStatic performs everything @TypeChecked does, but in addition triggers static
compilation.

Let’s take the example which failed, but this time let’s replace the @TypeChecked annotation with
@CompileStatic:

class Computer {
int compute(String str) {
str.length()
}
String compute(int x) {
String.valueOf(x)
}

@groovy.transform.CompileStatic
void test() {

202

def computer = new Computer()
computer.with {
assert compute(compute('foobar')) =='6"

}
}

Computer.metaClass.compute = { String str -> new Date() }
test()

This is the only difference. If we execute this program, this time, there is no runtime error. The test
method became immune to monkey patching, because the compute methods which are called in its
body are linked at compile time, so even if the metaclass of Computer changes, the program still
behaves as expected by the type checker.

Key benefits

There are several benefits of using @CompileStatic on your code:

* type safety
* immunity to monkey patching

* performance improvements

The performance improvements depend on the kind of program you are executing. If it is I/O
bound, the difference between statically compiled code and dynamic code is barely noticeable. On
highly CPU intensive code, since the bytecode which is generated is very close, if not equal, to the
one that Java would produce for an equivalent program, the performance is greatly improved.

Using the invokedynamic version of Groovy, which is accessible to people using JDK 7
and above, the performance of the dynamic code should be very close to the
performance of statically compiled code. Sometimes, it can even be faster! There is

TIP only one way to determine which version you should choose: measuring. The reason
is that depending on your program and the JVM that you use, the performance can be
significantly different. In particular, the invokedynamic version of Groovy is very
sensitive to the JVM version in use.

Type checking extensions

Writing a type checking extension

Towards a smarter type checker

Despite being a dynamic language, Groovy can be used with a static type checker at compile time,
enabled using the @TypeChecked annotation. In this mode, the compiler becomes more verbose and
throws errors for, example, typos, non-existent methods, etc. This comes with a few limitations
though, most of them coming from the fact that Groovy remains inherently a dynamic language.
For example, you wouldn’t be able to use type checking on code that uses the markup builder:

def builder = new MarkupBuilder(out)
builder.html {

203

head {

/] ...
}
body {

p 'Hello, world!"
}

In the previous example, none of the html, head, body or p methods exist. However if you execute the
code, it works because Groovy uses dynamic dispatch and converts those method calls at runtime.
In this builder, there’s no limitation about the number of tags that you can use, nor the attributes,
which means there is no chance for a type checker to know about all the possible methods (tags) at
compile time, unless you create a builder dedicated to HTML for example.

Groovy is a platform of choice when it comes to implement internal DSLs. The flexible syntax,
combined with runtime and compile-time metaprogramming capabilities make Groovy an
interesting choice because it allows the programmer to focus on the DSL rather than on tooling or
implementation. Since Groovy DSLs are Groovy code, it’s easy to have IDE support without having
to write a dedicated plugin for example.

In a lot of cases, DSL engines are written in Groovy (or Java) then user code is executed as scripts,
meaning that you have some kind of wrapper on top of user logic. The wrapper may consist, for
example, in a GroovyShell or GroovyScriptEngine that performs some tasks transparently before
running the script (adding imports, applying AST transforms, extending a base script,...). Often, user
written scripts come to production without testing because the DSL logic comes to a point
where any user may write code using the DSL syntax. In the end, a user may just ignore that what
they write is actually code. This adds some challenges for the DSL implementer, such as securing
execution of user code or, in this case, early reporting of errors.

For example, imagine a DSL which goal is to drive a rover on Mars remotely. Sending a message to
the rover takes around 15 minutes. If the rover executes the script and fails with an error (say a
typo), you have two problems:

* first, feedback comes only after 30 minutes (the time needed for the rover to get the script and
the time needed to receive the error)

» second, some portion of the script has been executed and you may have to change the fixed
script significantly (implying that you need to know the current state of the rover...)

Type checking extensions is a mechanism that will allow the developer of a DSL engine to make
those scripts safer by applying the same kind of checks that static type checking allows on regular
groovy classes.

The principle, here, is to fail early, that is to say fail compilation of scripts as soon as possible, and if
possible provide feedback to the user (including nice error messages).

In short, the idea behind type checking extensions is to make the compiler aware of all the runtime
metaprogramming tricks that the DSL uses, so that scripts can benefit the same level of compile-
time checks as a verbose statically compiled code would have. We will see that you can go even
further by performing checks that a normal type checker wouldn’t do, delivering powerful compile-

204

time checks for your users.

The extensions attribute

The @TypeChecked annotation supports an attribute named extensions. This parameter takes an
array of strings corresponding to a list of type checking extensions scripts. Those scripts are found
at compile time on classpath. For example, you would write:

@TypeChecked(extensions="'/path/to/myextension.groovy")
void foo() { ...}

In that case, the foo methods would be type checked with the rules of the normal type checker
completed by those found in the myextension.groovy script. Note that while internally the type
checker supports multiple mechanisms to implement type checking extensions (including plain old
java code), the recommended way is to use those type checking extension scripts.

A DSL for type checking

The idea behind type checking extensions is to use a DSL to extend the type checker capabilities.
This DSL allows you to hook into the compilation process, more specifically the type checking
phase, using an "event-driven" API. For example, when the type checker enters a method body, it
throws a beforeVisitMethod event that the extension can react to:

beforeVisitMethod { methodNode ->
println "Entering ${methodNode.name}"

}

Imagine that you have this rover DSL at hand. A user would write:

robot.move 100

If you have a class defined as such:

class Robot {
Robot move(int qt) { this }
}

The script can be type checked before being executed using the following script:

def config = new CompilerConfiguration()
config.addCompilationCustomizers(

new ASTTransformationCustomizer(TypeChecked) @)
)
def shell = new GroovyShell(config)
def robot = new Robot()

205

shell.setVariable('robot', robot)
shell.evaluate(script) ®

@ a compiler configuration adds the @TypeChecked annotation to all classes
@ use the configuration in a GroovyShell

® so that scripts compiled using the shell are compiled with @TypeChecked without the user having
to add it explicitly

Using the compiler configuration above, we can apply @TypeChecked transparently to the script. In
that case, it will fail at compile time:
[Static type checking] - The variable [robot] is undeclared.

Now, we will slightly update the configuration to include the * “extensions" parameter:

config.addCompilationCustomizers(
new ASTTransformationCustomizer(
TypeChecked,
extensions:['robotextension.groovy'])

Then add the following to your classpath:

robotextension.groovy

unresolvedVariable { var ->
if ('robot'==var.name) {
storeType(var, classNodeFor(Robot))
handled = true

Here, we’re telling the compiler that if an unresolved variable is found and that the name of the
variable is robot, then we can make sure that the type of this variable is Robot.

Type checking extensions API

AST

The type checking API is a low level API, dealing with the Abstract Syntax Tree. You will have to
know your AST well to develop extensions, even if the DSL makes it much easier than just dealing
with AST code from plain Java or Groovy.

Events

The type checker sends the following events, to which an extension script can react:

206

Event name
Called When
Arguments

Usage

Event name
Called When
Arguments

Usage

Event name
Called When
Arguments

Usage

Event name
Called When

Arguments

setup
Called after the type checker finished initialization

none

setup {
// this is called before anything else

}

Can be used to perform setup of your extension

finish

Called after the type checker completed type checking

none
finish {
// this is after completion
// of all type checking
}

Can be used to perform additional checks after the type checker has

finished its job.

unresolvedVariable
Called when the type checker finds an unresolved variable

VariableExpression vexp

unresolvedVariable { VariableExpression vexp ->
if (vexp.name == 'people') {
storeType(vexp, LIST_TYPE)
handled = true

Allows the developer to help the type checker with user-injected

variables.

unresolvedProperty
Called when the type checker cannot find a property on the receiver

PropertyExpression pexp

207

Usage

Event name
Called When
Arguments

Usage

Event name
Called When
Arguments

Usage

Event name
Called When

Arguments

208

unresolvedProperty { PropertyExpression pexp ->
if (pexp.propertyAsString == 'lonqueur' &&
getType(pexp.objectExpression) == STRING_TYPE) {
storeType(pexp, int_TYPE)
handled = true

Allows the developer to handle "dynamic” properties

unresolvedAttribute
Called when the type checker cannot find an attribute on the receiver

AttributeExpression aexp

unresolvedAttribute { AttributeExpression aexp ->
if (getType(aexp.objectExpression) == STRING_TYPE) {
storeType(aexp, STRING_TYPE)
handled = true

Allows the developer to handle missing attributes

beforeMethodCall
Called before the type checker starts type checking a method call
MethodCall call

beforeMethodCall { call ->
if (isMethodCallExpression(call)
&& call.methodAsString=="toUpperCase') {
addStaticTypeError('Not allowed',call)
handled = true

Allows you to intercept method calls before the type checker performs its
own checks. This is useful if you want to replace the default type
checking with a custom one for a limited scope. In that case, you must set
the handled flag to true, so that the type checker skips its own checks.

afterMethodCall
Called once the type checker has finished type checking a method call
MethodCall call

Usage

Event name

Called When

Arguments

Usage

Event name

Called When

Arguments

afterMethodCall { call ->
if (getTargetMethod(call).name=="toUpperCase") {
addStaticTypeError('Not allowed',call)
handled = true

Allow you to perform additional checks after the type checker has done
its own checks. This is in particular useful if you want to perform the
standard type checking tests but also want to ensure additional type
safety, for example checking the arguments against each other.Note that
afterMethodCall is called even if you did beforeMethodCall and set the
handled flag to true.

onMethodSelection

Called by the type checker when it finds a method appropriate for a
method call

Expression expr, MethodNode node

onMethodSelection { expr, node ->
if (node.declaringClass.name == 'java.lang.String') {
// calling a method on 'String’
// letls perform additional checks!
if (++count>2) {
addStaticTypeError("You can use only 2 calls on
String in your source code",expr)

}
}

The type checker works by inferring argument types of a method call,
then chooses a target method. If it finds one that corresponds, then it
triggers this event. It is for example interesting if you want to react on a
specific method call, such as entering the scope of a method that takes a
closure as argument (as in builders).Please note that this event may be
thrown for various types of expressions, not only method calls (binary
expressions for example).

methodNotFound

Called by the type checker when it fails to find an appropriate method for
a method call

ClassNode receiver, String name, ArgumentListExpression argList,
ClassNode[] argTypes,MethodCall call

209

Usage

Event name
Called When
Arguments

Usage

210

methodNotFound { receiver, name, arglList, argTypes, call ->
// receiver is the inferred type of the receiver
// name is the name of the called method
// arglList is the list of arquments the method was called
with
// argTypes is the array of inferred types for each
arqument
// call is the method call for which we couldnit find a
target method
if (receiver==classNodeFor(String)
&% name=="'lonqueur"'
&& arglist.size()==0) {
handled = true
return newMethod('longueur', classNodeFor(String))

Unlike onMethodSelection, this event is sent when the type checker cannot
find a target method for a method call (instance or static). It gives you the
chance to intercept the error before it is sent to the user, but also set the
target method.For this, you need to return a list of MethodNode. In most
situations, you would either return: an empty list, meaning that you
didn’t find a corresponding method, a list with exactly one element,
saying that there’s no doubt about the target methodIf you return more
than one MethodNode, then the compiler would throw an error to the
user stating that the method call is ambiguous, listing the possible
methods.For convenience, if you want to return only one method, you
are allowed to return it directly instead of wrapping it into a list.

beforeVisitMethod
Called by the type checker before type checking a method body
MethodNode node

beforeVisitMethod { methodNode ->

// tell the type checker we will handle the body by
ourselves

handled = methodNode.name.startsWith('skip")

The type checker will call this method before starting to type check a
method body. If you want, for example, to perform type checking by
yourself instead of letting the type checker do it, you have to set the
handled flag to true. This event can also be used to help define the scope
of your extension (for example, applying it only if you are inside method
foo).

Event name
Called When
Arguments

Usage

Event name
Called When
Arguments

Usage

Event name

Called When

Arguments

afterVisitMethod
Called by the type checker after type checking a method body
MethodNode node

afterVisitMethod { methodNode ->
scopeExit {
if (methods>2) {
addStaticTypeError("Method ${methodNode.name}
contains more than 2 method calls", methodNode)

}
}

Gives you the opportunity to perform additional checks after a method
body is visited by the type checker. This is useful if you collect
information, for example, and want to perform additional checks once
everything has been collected.

beforeVisitClass
Called by the type checker before type checking a class

ClassNode node

beforeVisitClass { ClassNode classNode ->
def name = classNode.nameWithoutPackage
if (!(name[0] in 'A'.."'Z")) {
addStaticTypeError("Class '${name}' doesn't start with
an uppercase letter",classNode)

}
}

If a class is type checked, then before visiting the class, this event will be
sent. It is also the case for inner classes defined inside a class annotated
with @TypeChecked. It can help you define the scope of your extension, or
you can even totally replace the visit of the type checker with a custom
type checking implementation. For that, you would have to set the
handled flag to true.

afterVisitClass

Called by the type checker after having finished the visit of a type
checked class

ClassNode node

211

Usage

Event name

Called When

Arguments

Usage

Event name

Called When

Arguments

212

afterVisitClass { ClassNode classNode ->
def name = classNode.namelWithoutPackage
if (!(name[@] in 'A'.."'Z")) {
addStaticTypeError("Class '${name}' doesn't start with
an uppercase letter",classNode)

}
}

Called for every class being type checked after the type checker finished
its work. This includes classes annotated with @TypeChecked and any
inner/anonymous class defined in the same class with is not skipped.

incompatibleAssignment

Called when the type checker thinks that an assignment is incorrect,
meaning that the right-hand side of an assignment is incompatible with
the left-hand side

ClassNode lhsType, ClassNode rhsType, Expression assignment

incompatibleAssignment { lhsType, rhsType, expr ->
if (isBinaryExpression(expr) &% isAssignment(expr
.operation.type)) {
if (lhsType==classNodeFor(int) && rhsType
==classNodeFor (Closure)) {
handled = true
}

Gives the developer the ability to handle incorrect assignments. This is
for example useful if a class overrides setProperty, because in that case it
is possible that assigning a variable of one type to a property of another
type is handled through that runtime mechanism. In that case, you can
help the type checker just by telling it that the assignment is valid (using
handled set to true).

incompatibleReturnType

Called when the type checker thinks that a return value is incompatibe
with the return type of the enclosing closure or method

ReturnStatement statement, ClassNode valueType

Usage
incompatibleReturnType { stmt, type ->

if (type == STRING_TYPE) {
handled = true
}

Gives the developer the ability to handle incorrect return values. This is
for example useful when the return value will undergo implicit
conversion or the enclosing closure’s target type is difficult to infer
properly. In that case, you can help the type checker just by telling it that
the assignment is valid (by setting the handled property).

Event name ambiguousMethods

Called When Called when the type checker cannot choose between several candidate
methods

Arguments List<MethodNode> methods, Expression origin

Usage

ambiguousMethods { methods, origin ->

// choose the method which has an Integer as parameter
type

methods.find { it.parameters.any { it.type ==
classNodeFor(Integer) } }
¥

Gives the developer the ability to handle incorrect assignments. This is
for example useful if a class overrides setProperty, because in that case it
is possible that assigning a variable of one type to a property of another
type is handled through that runtime mechanism. In that case, you can
help the type checker just by telling it that the assignment is valid (using
handled set to true).

Of course, an extension script may consist of several blocks, and you can have multiple blocks
responding to the same event. This makes the DSL look nicer and easier to write. However, reacting
to events is far from sufficient. If you know you can react to events, you also need to deal with the
errors, which implies several helper methods that will make things easier.

Working with extensions

Support classes

The DSL relies on a support class
called org.codehaus.groovy.transform.stc.GroovyTypeCheckingExtensionSupport . This class itself
extends org.codehaus.groovy.transform.stc.TypeCheckingExtension . Those two classes define a
number of helper methods that will make working with the AST easier, especially regarding type
checking. One interesting thing to know is that you have access to the type checker. This means
that you can programmatically call methods of the type checker, including those that allow you to

213

https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/transform/stc/GroovyTypeCheckingExtensionSupport.html
https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/transform/stc/TypeCheckingExtension.html

throw compilation errors.

The extension script delegates to
the org.codehaus.groovy.transform.stc.GroovyTypeCheckingExtensionSupport class, meaning that
you have direct access to the following variables:

e context: the type checker context, of
type org.codehaus.groovy.transform.stc.TypeCheckingContext

* typeCheckingVisitor: the type checker itself,
a org.codehaus.groovy.transform.stc.StaticTypeCheckingVisitor instance

» generatedMethods: a list of "generated methods", which is in fact the list of "dummy" methods
that you can create inside a type checking extension using the newMethod calls

The type checking context contains a lot of information that is useful in context for the type
checker. For example, the current stack of enclosing method calls, binary expressions, closures, ...
This information is in particular important if you have to know where you are when an error
occurs and that you want to handle it.

In addition to facilities provided by GroovyTypeCheckingExtensionSupport and
StaticTypeCheckingVisitor, a type-checking DSL script imports static members from
org.codehaus.groovy.ast.ClassHelper and
org.codehaus.groovy.transform.stc.StaticTypeCheckingSupport granting access to common types via
OBJECT_TYPE, STRING_TYPE, THROWABLE_TYPE, etc. and checks like missesGenericsTypes(ClassNode),
isClassClassNodeWrappingConcreteType(ClassNode) and so on.

Class nodes

Handling class nodes is something that needs particular attention when you work with a type
checking extension. Compilation works with an abstract syntax tree (AST) and the tree may not be
complete when you are type checking a class. This also means that when you refer to types, you
must not use class literals such as String or HashSet, but to class nodes representing those types.
This requires a certain level of abstraction and understanding how Groovy deals with class nodes.
To make things easier, Groovy supplies several helper methods to deal with class nodes. For
example, if you want to say "the type for String", you can write:

assert classNodeFor(String) instanceof ClassNode

You would also note that there is a variant of classNodeFor that takes a String as an argument,
instead of a Class. In general, you should not use that one, because it would create a class node for
which the name is String, but without any method, any property, ... defined on it. The first version
returns a class node that is resolved but the second one returns one that is not. So the latter should
be reserved for very special cases.

The second problem that you might encounter is referencing a type which is not yet compiled. This
may happen more often than you think. For example, when you compile a set of files together. In
that case, if you want to say "that variable is of type Foo" but Foo is not yet compiled, you can still
refer to the Foo class node using lookupClassNodeFor:

214

https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/transform/stc/GroovyTypeCheckingExtensionSupport.html
https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/transform/stc/TypeCheckingContext.html
https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/transform/stc/StaticTypeCheckingVisitor.html
https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/ast/ClassHelper.html
https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/transform/stc/StaticTypeCheckingSupport.html

assert lookupClassNodeFor('Foo') instanceof ClassNode

Helping the type checker

Say that you know that variable foo is of type Foo and you want to tell the type checker about it.
Then you can use the storeType method, which takes two arguments: the first one is the node for
which you want to store the type and the second one is the type of the node. If you look at the
implementation of storeType, you would see that it delegates to the type checker equivalent method,
which itself does a lot of work to store node metadata. You would also see that storing the type is
not limited to variables: you can set the type of any expression.

Likewise, getting the type of an AST node is just a matter of calling getType on that node. This would
in general be what you want, but there’s something that you must understand:

* getType returns the inferred type of an expression. This means that it will not return, for a
variable declared of type Object the class node for Object, but the inferred type of this
variable at this point of the code (flow typing)

* if you want to access the origin type of a variable (or field/parameter), then you must call the
appropriate method on the AST node

Throwing an error

To throw a type checking error, you only have to call the addStaticTypeError method which takes
two arguments:

* a message which is a string that will be displayed to the end user

» an AST node responsible for the error. It’s better to provide the best suiting AST node because it
will be used to retrieve the line and column numbers

isXXXExpression

It is often required to know the type of an AST node. For readability, the DSL provides a special
isXXXExpression method that will delegate to x instance of XXXExpression. For example, instead of
writing:

if (node instanceof BinaryExpression) {

}

you can just write:

if (isBinaryExpression(node)) {

}

215

Virtual methods

When you perform type checking of dynamic code, you may often face the case when you know
that a method call is valid but there is no "real" method behind it. As an example, take the Grails
dynamic finders. You can have a method call consisting of a method named findByName(...). As
there’s no findByName method defined in the bean, the type checker would complain. Yet, you
would know that this method wouldn’t fail at runtime, and you can even tell what is the return type
of this method. For this case, the DSL supports two special constructs that consist of phantom
methods. This means that you will return a method node that doesn’t really exist but is defined in
the context of type checking. Three methods exist:

* newMethod(String name, Class returnType)
* newMethod(String name, ClassNode returnType)

* newMethod(String name, Callable<ClassNode> return Type)

All three variants do the same: they create a new method node which name is the supplied name
and define the return type of this method. Moreover, the type checker would add those methods in
the generatedMethods list (see isGenerated below). The reason why we only set a name and a return
type is that it is only what you need in 90% of the cases. For example, in the findByName example
upper, the only thing you need to know is that findByName wouldn’t fail at runtime, and that it
returns a domain class. The Callable version of return type is interesting because it defers the
computation of the return type when the type checker actually needs it. This is interesting because
in some circumstances, you may not know the actual return type when the type checker demands
it, so you can use a closure that will be called each time getReturnType is called by the type checker
on this method node. If you combine this with deferred checks, you can achieve pretty complex
type checking including handling of forward references.

newMethod(name) {

// each time getReturnType on this method node will be called, this closure will
be called!

println 'Type checker called me!'

lookupClassNodeFor (Foo) // return type

Should you need more than the name and return type, you can always create a new MethodNode by
yourself.

Scoping

Scoping is very important in DSL type checking and is one of the reasons why we couldn’t use
a pointcut based approach to DSL type checking. Basically, you must be able to define very precisely
when your extension applies and when it does not. Moreover, you must be able to handle situations
that a regular type checker would not be able to handle, such as forward references:

point a(1,1)
line a,b // b is referenced afterwards!
point b(5,2)

216

Say for example that you want to handle a builder:

builder.foo {
bar
baz(bar)

Your extension, then, should only be active once you’ve entered the foo method, and inactive
outside this scope. But you could have complex situations like multiple builders in the same file or
embedded builders (builders in builders). While you should not try to fix all this from start (you
must accept limitations to type checking), the type checker does offer a nice mechanism to handle
this: a scoping stack, using the newScope and scopeExit methods.

* newScope creates a new scope and puts it on top of the stack

» scopeExits pops a scope from the stack
A scope consists of:

* a parent scope

* a map of custom data

If you want to look at the implementation, it’s simply a LinkedHashMap
(org.codehaus.groovy.transform.stc.GroovyTypeCheckingExtensionSupport.TypeCheckingScope),
but it’s quite powerful. For example, you can use such a scope to store a list of closures to be
executed when you exit the scope. This is how you would handle forward references:

def scope = newScope()
scope.secondPassChecks = []
/...
scope.secondPassChecks << { println 'executed later' }
/] ...
scopeExit {
secondPassChecks*.run() // execute deferred checks

}

That is to say, that if at some point you are not able to determine the type of an expression, or that
you are not able to check at this point that an assignment is valid or not, you can still make the
check later... This is a very powerful feature. Now, newScope and scopeExit provide some interesting
syntactic sugar:

newScope {
secondPassChecks = []

}

At anytime in the DSL, you can access the current scope using getCurrentScope() or more
simply currentScope:

217

https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/transform/stc/GroovyTypeCheckingExtensionSupport/TypeCheckingScope.html

/],
currentScope.secondPassChecks << { println 'executed later' }
/] ...

The general schema would then be:
* determine a pointcut where you push a new scope on stack and initialize custom variables
within this scope

* using the various events, you can use the information stored in your custom scope to perform
checks, defer checks,...

* determine a pointcut where you exit the scope, call scopeExit and eventually perform additional
checks

Other useful methods

For the complete list of helper methods, please refer to
the org.codehaus.groovy.transform.stc.GroovyTypeCheckingExtensionSupport and
org.codehaus.groovy.transform.stc.TypeCheckingExtension classes. However, take special attention
to those methods:

* isDynamic: takes a VariableExpression as argument and returns true if the variable is a
DynamicExpression, which means, in a script, that it wasn’t defined using a type or def.

* isGenerated: takes a MethodNode as an argument and tells if the method is one that was
generated by the type checker extension using the newMethod method

* isAnnotatedBy: takes an AST node and a Class (or ClassNode), and tells if the node is annotated
with this class. For example: isAnnotatedBy(node, NotNull)

* getTargetMethod: takes a method call as argument and returns the MethodNode that the type
checker has determined for it

* delegatesTo: emulates the behaviour of the @DelegatesTo annotation. It allows you to tell that the
argument will delegate to a specific type (you can also specify the delegation strategy)

Advanced type checking extensions

Precompiled type checking extensions

All the examples above use type checking scripts. They are found in source form in classpath,
meaning that:

* a Groovy source file, corresponding to the type checking extension, is available on compilation
classpath
* this file is compiled by the Groovy compiler for each source unit being compiled (often, a source

unit corresponds to a single file)

It is a very convenient way to develop type checking extensions, however it implies a slower
compilation phase, because of the compilation of the extension itself for each file being compiled.
For those reasons, it can be practical to rely on a precompiled extension. You have two options to do

218

https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/transform/stc/GroovyTypeCheckingExtensionSupport.html
https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?org/codehaus/groovy/transform/stc/TypeCheckingExtension.html

this:

» write the extension in Groovy, compile it, then use a reference to the extension class instead of
the source

 write the extension in Java, compile it, then use a reference to the extension class

Writing a type checking extension in Groovy is the easiest path. Basically, the idea is that the type
checking extension script becomes the body of the main method of a type checking extension class,
as illustrated here:

import org.codehaus.groovy.transform.stc.GroovyTypeCheckingExtensionSupport

class PrecompiledExtension extends GroovyTypeCheckingExtensionSupport.TypeCheckingDSL
{ 0]

@0verride
Object run() {
@
unresolvedVariable { var ->
if ('robot'==var.name) {
storeType(var, classNodeFor(Robot))

handled = true

@ extending the TypeCheckingDSL class is the easiest
@ then the extension code needs to go inside the run method

® and you can use the very same events as an extension written in source form

Setting up the extension is very similar to using a source form extension:

config.addCompilationCustomizers(
new ASTTransformationCustomizer (
TypeChecked,
extensions:['typing.PrecompiledExtension'])

The difference is that instead of using a path in classpath, you just specify the fully qualified class
name of the precompiled extension.

In case you really want to write an extension in Java, then you will not benefit from the type
checking extension DSL. The extension above can be rewritten in Java this way:

import org.codehaus.groovy.ast.ClassHelper;
import org.codehaus.groovy.ast.expr.VariableExpression;

219

import org.codehaus.groovy.transform.stc.AbstractTypeCheckingExtension;

import org.codehaus.groovy.transform.stc.StaticTypeCheckingVisitor;

public class Precompiled]avaExtension extends AbstractTypeCheckingExtension {

@

public PrecompiledJavaExtension(final StaticTypeCheckingVisitor
typeCheckingVisitor) {
super (typeCheckingVisitor);

}
@0verride
public boolean handleUnresolvedVariableExpression(final VariableExpression vexp) {
@
if ("robot".equals(vexp.getName())) {
storeType(vexp, ClassHelper.make(Robot.class));
setHandled(true);
return true;
}
return false;
}
}

@ extend the AbstractTypeCheckingExtension class

@ then override the handleXXX methods as required

Using @Grab in a type checking extension

It is totally possible to use the @Grab annotation in a type checking extension. This means you can
include libraries that would only be available at compile time. In that case, you must understand
that you would increase the time of compilation significantly (at least, the first time it grabs the
dependencies).

Sharing or packaging type checking extensions

A type checking extension is just a script that need to be on classpath. As such, you can share it as is,
or bundle it in a jar file that would be added to classpath.

Global type checking extensions

While you can configure the compiler to transparently add type checking extensions to your script,
there is currently no way to apply an extension transparently just by having it on classpath.

Type checking extensions and @CompileStatic

Type checking extensions are used with @TypeChecked but can also be used with @CompileStatic.
However, you must be aware that:

220

* a type checking extension used with @CompileStatic will in general not be sufficient to let the
compiler know how to generate statically compilable code from "unsafe" code

* it is possible to use a type checking extension with @CompileStatic just to enhance type checking,
that is to say introduce more compilation errors, without actually dealing with dynamic code

Let’s explain the first point, which is that even if you use an extension, the compiler will not know
how to compile your code statically: technically, even if you tell the type checker what is the type of
a dynamic variable, for example, it would not know how to compile it. Is it getBinding('foo"),
getProperty('foo'), delegate.getFoo(),...? There’s absolutely no direct way to tell the static compiler
how to compile such code even if you use a type checking extension (that would, again, only give
hints about the type).

One possible solution for this particular example is to instruct the compiler to use mixed mode
compilation. The more advanced one is to use AST transformations during type checking but it is
far more complex.

Type checking extensions allow you to help the type checker where it fails, but it also allows you to
fail where it doesn’t. In that context, it makes sense to support extensions for @CompileStatic too.
Imagine an extension that is capable of type checking SQL queries. In that case, the extension
would be valid in both dynamic and static context, because without the extension, the code would
still pass.

Mixed mode compilation

In the previous section, we highlighted the fact that you can activate type checking extensions with
@CompileStatic. In that context, the type checker would not complain anymore about some
unresolved variables or unknown method calls, but it would still wouldn’t know how to compile
them statically.

Mixed mode compilation offers a third way, which is to instruct the compiler that whenever an
unresolved variable or method call is found, then it should fall back to a dynamic mode. This is
possible thanks to type checking extensions and a special makeDynamic call.

To illustrate this, let’s come back to the Robot example:

robot.move 100

And let’s try to activate our type checking extension using @CompileStatic instead of @TypeChecked:

def config = new CompilerConfiguration()
config.addCompilationCustomizers(
new ASTTransformationCustomizer(
CompileStatic,
extensions:['robotextension.groovy'])

® e

)
def shell = new GroovyShell(config)

def robot = new Robot()
shell.setVariable('robot', robot)

221

shell.evaluate(script)

@ Apply @CompileStatic transparently

@ Activate the type checking extension

The script will run fine because the static compiler is told about the type of the robot variable, so it
is capable of making a direct call to move. But before that, how did the compiler know how to get the
robot variable? In fact by default, in a type checking extension, setting handled=true on an
unresolved variable will automatically trigger a dynamic resolution, so in this case you don’t have
anything special to make the compiler use a mixed mode. However, let’s slightly update our
example, starting from the robot script:

move 100

Here you can notice that there is no reference to robot anymore. Our extension will not help then
because we will not be able to instruct the compiler that move is done on a Robot instance. This
example of code can be executed in a totally dynamic way thanks to the help of a
groovy.util.DelegatingScript:

def config = new CompilerConfiguration()
config.scriptBaseClass = 'groovy.util.DelegatingScript’
def shell = new GroovyShell(config)

def runner = shell.parse(script)

runner.setDelegate(new Robot())

runner.run()

®OO O

@ we configure the compiler to use a DelegatingScript as the base class

@ the script source needs to be parsed and will return an instance of DelegatingScript
® we can then call setDelegate to use a Robot as the delegate of the script

@ then execute the script. move will be directly executed on the delegate

If we want this to pass with @CompileStatic, we have to use a type checking extension, so let’s
update our configuration:

config.addCompilationCustomizers(
new ASTTransformationCustomizer (
CompileStatic,
extensions:['robotextension2.groovy'])

® O

@ apply @CompileStatic transparently

@ use an alternate type checking extension meant to recognize the call to move

Then in the previous section we have learnt how to deal with unrecognized method calls, so we are
able to write this extension:

222

https://docs.groovy-lang.org/5.0.0-beta-1/html/gapi/index.html?groovy/util/DelegatingScript.html

robotextension2.groovy

methodNotFound { receiver, name, arglList, argTypes, call ->
if (isMethodCallExpression(call)
&& call.implicitThis
&& 'move'==name
&& argTypes.length==1
&& argTypes[@] == classNodeFor(int)
) {
handled = true
newMethod('move', classNodeFor(Robot))

Q@ OOV

@ if the call is a method call (not a static method call)

@ that this call is made on "implicit this" (no explicit this.)
® that the method being called is move

@ and that the call is done with a single argument

® and that argument is of type int

® then tell the type checker that the call is valid

@ and that the return type of the call is Robot

If you try to execute this code, then you could be surprised that it actually fails at runtime:

java.lang.NoSuchMethodError: java.lang.0Object.move()Ltyping/Robot;

The reason is very simple: while the type checking extension is sufficient for @TypeChecked, which
does not involve static compilation, it is not enough for @CompileStatic which requires additional
information. In this case, you told the compiler that the method existed, but you didn’t explain to it
what method it is in reality, and what is the receiver of the message (the delegate).

Fixing this is very easy and just implies replacing the newMethod call with something else:

robotextension3.groovy

methodNotFound { receiver, name, arglList, argTypes, call ->
if (isMethodCallExpression(call)
&& call.implicitThis
&& 'move'==name
&& argTypes.length==
&& argTypes[@] == classNodeFor(int)
) {
makeDynamic(call, classNodeFor(Robot)) @)
}

223

@ tell the compiler that the call should be make dynamic
The makeDynamic call does 3 things:

* it returns a virtual method just like newMethod

* automatically sets the handled flag to true for you

* but also marks the call to be done dynamically
So when the compiler will have to generate bytecode for the call to move, since it is now marked as a
dynamic call, it will fall back to the dynamic compiler and let it handle the call. And since the

extension tells us that the return type of the dynamic call is a Robot, subsequent calls will be done
statically!

Some would wonder why the static compiler doesn’t do this by default without an extension. It is a
design decision:

« if the code is statically compiled, we normally want type safety and best performance
* so if unrecognized variables/method calls are made dynamic, you loose type safety, but also all

support for typos at compile time!

In short, if you want to have mixed mode compilation, it has to be explicit, through a type checking
extension, so that the compiler, and the designer of the DSL, are totally aware of what they are
doing.

makeDynamic can be used on 3 kind of AST nodes:

* a method node (MethodNode)
* avariable (VariableExpression)

* a property expression (PropertyExpression)

If that is not enough, then it means that static compilation cannot be done directly and that you
have to rely on AST transformations.

Transforming the AST in an extension

Type checking extensions look very attractive from an AST transformation design point of view:
extensions have access to context like inferred types, which is often nice to have. And an extension
has a direct access to the abstract syntax tree. Since you have access to the AST, there is nothing in
theory that prevents you from modifying the AST. However, we do not recommend you to do so,
unless you are an advanced AST transformation designer and well aware of the compiler internals:

* First of all, you would explicitly break the contract of type checking, which is to annotate, and
only annotate the AST. Type checking should not modify the AST tree because you wouldn’t be
able to guarantee anymore that code without the @TypeChecked annotation behaves the same
without the annotation.

* If your extension is meant to work with @CompileStatic, then you can modify the AST because
this is indeed what @CompileStatic will eventually do. Static compilation doesn’t guarantee the
same semantics at dynamic Groovy so there is effectively a difference between code compiled

224

with @CompileStatic and code compiled with @TypeChecked. It’s up to you to choose whatever
strategy you want to update the AST, but probably using an AST transformation that runs before
type checking is easier.

* if you cannot rely on a transformation that kicks in before the type checker, then you must be
very careful

The type checking phase is the last phase running in the compiler before
bytecode generation. All other AST transformations run before that and the
compiler does a very good job at "fixing" incorrect AST generated before the
type checking phase. As soon as you perform a transformation during type

WARNING checking, for example directly in a type checking extension, then you have to
do all this work of generating a 100% compiler compliant abstract syntax tree
by yourself, which can easily become complex. That’s why we do not
recommend to go that way if you are beginning with type checking extensions
and AST transformations.

Examples

Examples of real life type checking extensions are easy to find. You can download the source code
for Groovy and take a look at the TypeCheckingExtensionsTest class which is linked to various
extension scripts.

An example of a complex type checking extension can be found in the Markup Template Engine
source code: this template engine relies on a type checking extension and AST transformations to
transform templates into fully statically compiled code. Sources for this can be found here.

225

https://github.com/apache/groovy/blob/master/src/test/groovy/groovy/transform/stc/TypeCheckingExtensionsTest.groovy
https://github.com/apache/groovy/tree/master/src/test-resources/groovy/transform/stc
https://github.com/apache/groovy/tree/master/src/test-resources/groovy/transform/stc
templating.html#_the_markuptemplateengine
https://github.com/apache/groovy/tree/master/subprojects/groovy-templates/src/main/groovy/groovy/text/markup

Tools

Running Groovy from the commandline

groovy, the Groovy command

groovy invokes the Groovy command line processor. It allows you to run inline Groovy expressions,
and scripts, tests or application within groovy files. It plays a similar role to java in the Java world
but handles inline scripts and rather than invoking class files, it is normally called with scripts and
will automatically call the Groovy compiler as needed.

The easiest way to run a Groovy script, test or application is to run the following command at your

shell prompt:

> groovy MyScript.groovy

The .groovy part is optional. The groovy command supports a number of command line switches:

Short version Long version

-a --autosplit
<splitPattern>

-b --basescript <class>

-C --encoding <charset>

-cp <path> -classpath <path>
--classpath <path>
--configscript <path>

-D --define <name=value>

-d --debug

226

Description

split lines using

splitPattern (default \s")

using implicit 'split’
variable
Base class name for

scripts (must derive
from Script)

specify the encoding of
the files

Specify the compilation
classpath. Must be the
first argument.

Advanced compiler
configuration script

define a system
property

debug mode will print
out full stack traces

Example

groovy -cp lib/dep.jar
MyScript

groovy --configscript
config/config.groovy
src/Person.groovy

Short version Long version

--disableopt <optlist>

-e <script>

-h --help

-i <extension>

-1 <port>

-n

Y

-V --version

-pa --parameters

-pr --enable-preview

Compiling Groovy

Description Example

disables one or all
optimization elements.
optlist can be a comma
separated list with the
elements:

all (disables all
optimizations),

int (disable any int
based optimizations)

specify an inline
command line script

groovy -e "println new
Date()"

Displays usage
information for the
command line groovy
command

groovy --help

modify files in place;
create backup if
extension is given (e.g.
"bak’)

listen on a port and
process inbound lines
(default: 1960)

process files line by line
using implicit 'line’
variable

process files line by line

and print result (see
also -n)

display the Groovy and groovy -v
JVM versions

Generates metadata for groovy --parameters
reflection on method Person.groovy
parameter names on

JDK 8 and above.

Defaults to false.

Enable preview Java
features (jdk12+ only).

groovy --enable
-preview Person.groovy

227

groovyc, the Groovy compiler

groovyc is the Groovy compiler command line tool. It allows you to compile Groovy sources into
bytecode. It plays the same role as javac in the Java world. The easiest way to compile a Groovy
script or class is to run the following command:

groovyc MyClass.groovy

This will produce a My(Class.class file (as well as other .class files depending on the contents of the

source). groovyc supports a number of command line switches:

Short version Long version Description Example
-cp -classpath, --classpath Specify the compilation groovyc -cp lib/dep.jar
classpath. Must be the MyClass.groovy
first argument.
--sourcepath Directory where to find
source files. Not used
anymore. Specifying
this parameter will
have no effect.
--temp Temporary directory
for the compiler
--encoding Encoding of the source groovyc --encoding utf-
files 8 script.groovy
--help Displays help for the groovyc --help
command line groovyc
tool
-d Specify where to place groovyc -d target
generated class files. Person.groovy
-V --version Displays the compiler groovyc -v
version
-e --exception Displays the stack trace groovyc -e
in case of compilation script.groovy
error
S| --jointCompilation* Enables joint groovyc -j A.groovy
compilation B.java
-b --basescript Base class name for
scripts (must derive
from Script)
--configscript Advanced compiler groovyc --configscript

228

configuration script

config/config.groovy
src/Person.groovy

Short version Long version Description Example

-Jproperty=value Properties to be passed groovyc -j -Jtarget=1.6
to javac if joint -Jsource=1.6 A.groovy
compilation is enabled B.java

-Fflag Flags to be passed to groovyc -j -Fnowarn
javac if joint A.groovy B.java
compilation is enabled

-pa --parameters Generates metadata for groovyc --parameters
reflection on method Person.groovy
parameter names.

Requires Java 8+.

-pr --enable-preview Enable preview Java groovy --enable
features (jdk12+ only). -preview Person.groovy

@argfile Read options and groovyc @conf/args
source files from
specified file.

Notes: * for a full description of joint compilation, see the joint compilation section.

Ant task

See the groovyc Ant task documentation. It allows the Groovy compiler to be invoked from Apache
Ant.

Gant

Gant is a tool for scripting Ant tasks using Groovy instead of XML to specify the logic. As such, it has
exactly the same features as the Groovyc Ant task.

Gradle

Gradle is a build tool that allows you to leverage the flexibility of Ant, while keeping the simplicity
of convention over configuration that tools like Maven offer. Builds are specified using a Groovy
DSL, which offers great