CIF documentation

Copyright (c) 2010, 2024 Contributors to the Eclipse Foundation

Version v6.0-RC1



Table of Contents

1. Synthesis-based engineering

1.1. Supervisory controllers
1.2. Engineering approaches for supervisory controller development
1.2.1. Traditional engineering
1.2.2. Model-based engineering
1.2.3. Verification-based engineering
1.2.4. Synthesis-based engineering
1.3. Synthesis-based engineering example
1.3.1. FIFO requirement
1.3.2. Synthesis-based engineering
1.3.3. Example benefits of synthesis-based engineering
1.4. Synthesis-based engineering in practice
1.4.1. Development process
1.4.2. Advanced topics
1.4.3. Synthesis-based engineering in practice example
1.5. Challenges in applying synthesis-based engineering
1.5.1. Change in way-of-working
1.5.2. Tool support

2. Language tutorial

2.1. Introduction

2.2. Lessons

2.3. Basics
2.3.1. Automata
2.3.2. Synchronizing events
2.3.3. Non-determinism
2.3.4. Alphabet
2.3.5. Event declaration placement
2.3.6. Shorter notations

2.4. Data
2.4.1. Discrete variables
2.4.2. Discrete variable value changes
2.4.3. Location/variable duality (1/2)
2.4.4. Location/variable duality (2/2)
2.4.5. Global read, local write
2.4.6. Monitoring
2.4.7. 0ld and new values in assignments
2.4.8. The tau event
2.4.9. Initial values of discrete variables

N a0 W Ww

10
15
16
23
24
25
26
27
29
35
38
45
46
46
48
48
48
35
35
56
39
61
63
65
67
67
68
69
70
71
73
76
80
82



2.4.10. Initialization predicates 83

2.4.11. Using locations as variables 88
2.4.12. State (exclusion) invariants 90
2.4.13. State/event exclusion invariants 92
2.5. Types and values 96
2.5.1. Types, values, and expressions 96
2.5.2. Values overview 97
2.5.3. Integers 98
2.5.4. Ranged integers 99
2.5.5. Reals 99
2.5.6. Booleans 100
2.5.7. Strings 101
2.5.8. Enumerations 101
2.5.9. Tuples 101
2.5.10. Lists 103
2.5.11. Bounded lists and arrays 106
2.5.12. Sets 107
2.5.13. Dictionaries 108
2.5.14. Combining values 110
2.5.15. If and switch expressions 110
2.6. Scalable solutions and reuse (1/2) 113
2.6.1. Constants 113
2.6.2. Algebraic variables 114
2.6.3. Algebraic variables and equations 116
2.6.4. Type declarations 118
2.7. Time 118
2.7.1. Timing 118
2.7.2. Continuous variables 120
2.7.3. Continuous variables and equations 122
2.7.4. Equations 124
2.7.5. Variables overview 125
2.7.6. Urgency 126
2.7.7. Deadlock and livelock 127
2.8. Channel communication 128
2.8.1. Channels 128
2.8.2. Dataless channels 132
2.8.3. Combining channel communication with event synchronization 133
2.9. Functions 135
2.9.1. Functions 135
2.9.2. Internal user-defined functions 135

2.9.3. Function statements 137



2.9.4. Functions as values

2.10. Scalable solutions and reuse (2/2)
2.10.1. Automaton definition/instantiation
2.10.2. Parametrized automaton definitions
2.10.3. Automaton definition parameters
2.10.4. Groups
2.10.5. Group definitions
2.10.6. Imports
2.10.7. Imports and libraries
2.10.8. Imports and groups
2.10.9. Namespaces
2.10.10. Input variables

2.11. Stochastics
2.11.1. Stochastics
2.11.2. Discrete, continuous, and constant distributions
2.11.3. Pseudo-randomness

2.12. SVG visualization and interaction
2.12.1. SVG visualization
2.12.2. First example
2.12.3. Inkscape
2.12.4. Sun/moon example
2.12.5. Walk example
2.12.6. Rate example
2.12.7. Workstation example
2.12.8. Tank example
2.12.9. Lamps example
2.12.10. Buffers/products example
2.12.11. SVG interaction

2.13. Text
2.13.1. Print output
2.13.2. Print output examples
2.13.3. Text formatting

2.14. Language extensions
2.14.1. Supervisory controller synthesis
2.14.2. Annotations

3. Language reference

3.1. Syntax
3.1.1. Lexical syntax
3.1.2. Grammar
3.1.3. CIF XML files

3.2. SVG visualization and interaction

141
142
142
144
145
152
153
156
158
159
162
162
166
166
167
169
171
171
172
174
176
178
182
183
186
189
193
196
198
198
199
205
210
210
214
219
219
220
225
239
239



3.2.1. CIF/SVG declarations 239

3.3. Text 258
3.3.1. Print declarations 258
3.3.2. Print file declarations 264
3.3.3. Text formatting details 266

3.4. Annotations 277
3.4.1. Annotations 277
3.4.2. Built-in annotations 282

4. Tools 287

4.1. Specification tools 288
4.1.1. CIF text editor 288

4.2. Supervisory controller synthesis tools 289
4.2.1. Data-based supervisory controller synthesis 289
4.2.2. Event-based synthesis toolset 339
4.2.3. CIF to Supremica transformer 358

4.3. Simulation, validation, and verification tools 363
4.3.1. CIF simulator 364
4.3.2. CIF to mCRL2 transformer 449
4.3.3. CIF to UPPAAL transformer 457
4.3.4. Controller properties checker 460

4.4. Real-time testing, code generation, and implementation tools 483
4.4.1. CIF code generator 483
4.4.2. CIF PLC code generator (stable) 521
4.4.3. CIF PLC code generator (deprecated) 547

4.5. Miscellaneous tools 565
4.5.1. CIF to CIF transformer 565
4.5.2. CIF merger 662
4.5.3. CIF event disabler 670
4.5.4. CIF explorer 674
4.5.5. CIF to yEd transformer 677

4.6. Scripting 685
4.6.1. Introduction to scripting 685
4.6.2. Overview of scriptable tools 689

5. CIF examples 693
6. CIF release notes 694

6.1. Version 6.0 694

6.2. Version 5.0 (2024-10-03) 698

6.3. Version 4.0 (2024-06-30) 704

6.4. Version 3.0 (2024-03-31) 710

6.5. Version 2.0 (2023-12-22) 713

6.6. Version 1.0 (2023-09-30) 715



6.7. Version 0.10 (2023-06-30)
6.8. Version 0.9 (2023-03-31)
6.9. Version 0.8 (2022-12-21)
6.10. Version 0.7 (2022-09-30)
6.11. Version 0.6 (2022-07-07)
6.12. Version 0.5 (2022-03-29)
6.13. Version 0.4 (2021-12-17)
6.14. Version 0.3 (2021-10-01)
6.15. Version 0.2 (2021-07-07)
6.16. Version 0.1 (2021-04-02)
7. Developers
7.1. CIF language modification
8. CIF history
8.1. Conception
8.2.CIF 1
8.3.CIF 2
8.4.CIF 3
8.5. Eclipse ESCET
9. Legal

Index

716
719
721
723
723
724
725
727
728
730
732
732
735
735
736
736
737
738
740
742



CIF is a declarative modeling language for the specification of discrete event,
timed, and hybrid systems as a collection of synchronizing automata. The CIF
tooling supports the entire development process of controllers, including among
others specification, supervisory controller synthesis, simulation-based
validation and visualization, verification, real-time testing, and code generation.
Combined they enable a synthesis-based engineering approach to efficiently and
cost-effectively design and implement high-quality controllers.

CIF is one of the tools of the Eclipse ESCET™ project. Visit the project website for downloads,
installation instructions, source code, general tool usage information, information on how to
contribute, and more.

The documentation consists of:

» CIF synthesis-based engineering manual
* CIF language tutorial

» CIF language reference manual

* CIF tool manual

* CIF examples

* CIF release notes

* CIF developers manual

 CIF history (and why it’s called 'CIF’)

* Legal information

A screenshot showing a CIF model and simulation:


https://eclipse.dev/escet/v6.0-RC1

j- of 778M

File Edit MNavigate Search Project Run Window Help
B HE R DRS Y RE T oo Q (8 |few
=g
5 ProjectBxplo... 32 = O
[of] tankcif 53 % Plot Visualizer 53
G:D ? i 15= group tank: ~
viz CIFExant\p\es-OJ‘O.quahﬁer 18 cont V' =‘19,B,- 10 T T T B
~ [= hybrid 17 alg real Qi = controller.n * 5.@; 5
5 (= bouncing_ball 18 alg real Qo = sqrt(V);
5 (= conveyer 19 equation V' = Qi - Qo; 0
. 20
fluid
& UIk 21 svgout id "water” attr “"height” value 7.5 * v; -
v & tan 22 sugout id text value 5 10 15 20 25 30 35
|or| tank.cif 23 svgout id "Qi"  text value fime
tank.cif trajdata 24 svgout id "Qo" text value
tonksv 35 end | — controllern — fankQl — fankQo  lankV —— lank ¥’
tank.tooldef ig comat roll
© automaton controller: -
5 [ synthesis 25 alg int n; SVG Visualizer 33
> [= timed 29 n
38 location closed:
31 initial; T
32 equation n = @; i Qi=50
33 edge when tank.V <= 2 gote opened; |
34 i
35 location opened: v
< >
[=5] State Visualizer 32
Name Value »
i time 38,
9 ocontroller  opened
< > -
~.controllern 1
[¥+] Applications 53 =g -tank.Qi 30 v < >
(s
" § = - ) - _ =
Pr Propert Consol E El +S-=0
v W ToolDef interpreter - (Pt | |feres Seasre s EBEE B~
W CIF simulator ToolDef interpreter [TERMINATED after 425 638ms] /CIFExamples-0.1.0.qualifier/hybrid/tank/tank.tooldef (started at 2020-03-07 14:28:53.278)
~
Transition: delaying for 3.1883885325514274 time units at time 36.918671836315674
Simulation was terminated per the user's request.
v
<




Chapter 1. Synthesis-based engineering

CIF supports synthesis-based engineering (SBE), an engineering approach to design and implement
supervisory controllers. The engineering approach combines model-based engineering with
computer-aided design to produce correct-by-construction controllers. It does so by automating as
many steps as possible in the development process.

Supervisory controller synthesis is a main element of synthesis-based engineering, and a key
feature of CIF. It involves the automatic generation of supervisory controller models.
Implementation of the controller is achieved through (implementation language) code generation,
improving speed and reducing the number of errors introduced at this stage. Combined, they allow
engineers to focus on what the controller should do, rather than how it should do it, and how this is
to be implemented.

Synthesis-based engineering has many more benefits. As the engineering approach uses well-
defined models, designs can be discussed, analyzed, model-checked, or simulated. That allows
finding and correcting issues early in the development process, rather than during later stages
where correcting them is more costly. It also supports a comprehensive modular design and
efficient incremental engineering. Ultimately, this reduces development time and improves the
quality of the resulting supervisory controllers.

Supervisory controllers

Explains what supervisory controllers are, in what types of systems you can find them, and
where they are located within such systems.

Engineering approaches for supervisory controller development

Discusses synthesis-based engineering of supervisory controllers, its benefits, and its relation to
other engineering approaches.

Synthesis-based engineering example

Demonstrates the value of synthesis-based engineering through an example.

Synthesis-based engineering in practice

Explains concretely how to use the CIF language and toolset to apply synthesis-based
engineering of supervisory controllers.

Challenges in applying synthesis-based engineering

Explains the challenges of embedding a synthesis-based engineering approach into industrial
practice.

To learn how to use SBE, you can also follow the Eclipse ESCET online SBE course.

1.1. Supervisory controllers


https://eclipse.dev/escet/v6.0-RC1/sbe-course/

Automated systems are all around us. For instance, hospitals use X-ray and MRI systems, industrial
printers print books and magazines, lithography systems are essential for the production of
computer chips, and waterway locks bring ships from one water level to another. In today’s digital
age, all these systems contain software that controls their operation. Such systems are often called
cyber-physical systems, for the physical part that consists of the hardware components being
controlled, and the cyber part that contains the software that controls those physical parts.

Today’s cyber-physical systems are often highly complex. To manage their complexity, they are
typically step-by-step divided into sub-systems, sub-sub-systems, etc, each with their own
responsibility. This way, at the most subdivided level, components are obtained that are small
enough to be developed, tested and maintained in isolation. The components are often divided over
several layers, to form a layered system architecture.

The control of a system can similarly be subdivided and layered. The following figure shows a
traditional view on the control of a system:

( Human operator )

A

Y

< Supervisory controller(s) >

~

Y

( Resource contmller[s} )

': Actuators } l: Sensors

Mechanical components >

At the bottom are the mechanical components, such as motors, switches, levers and valves. Their
operation can be steered through actuators and their state of operation can be observed through
sensors. Resource controllers provide a first level of control. They may for instance correct for
sensor jitter, translate continuous signals to discrete ones, or detect and even correct anomalous
situations.

A supervisory controller provides higher-level control. It is typically responsible for the correct and
safe behavior of a (sub-)system. For instance, it could be responsible for preventing damage to
mechanical components or human operators. It may prevent collisions with or among mechanical
components, or prevent mechanical components from overheating. It could control a single sub-
system, coordinating one or more resource controllers. However, in case of a layered architecture,
it could also coordinate multiple supervisory controllers of a lower layer. Supervisory controllers


https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Supervisory_control

can thus be found at various levels of a system architecture.

Some systems are fully automated, without the need for human intervention or control. However,
most systems provide some kind of human-machine interface that allows a human operator to
monitor the system and if necessary control its operation.

Regardless of the exact system architecture, and whether human intervention is possible or not,
supervisory controllers play an essential role in the safe control of all kinds of cyber-physical
systems, and can be found at various levels within such system:s.

1.2. Engineering approaches for supervisory
controller development

Supervisory controllers can be developed in various ways. The following figure gives an overview.
It shows multiple approaches to design and engineer supervisory controllers, as well as how these
approaches relate to each other:

Engineering approach -> Traditional Model-Based Verification-Based Synthesis-Based
Engineering Engineering Engineering Engineering
J Development step

Requirements design Document-based Document-based Model-based (formal) Model-based (formal)

Controller design Document-based Model-based (formal) Model-based (formal) Computer-aided (formal)
Realization in software Traditional software Code generation Code generation Code generation
(implementation code) engineering (coding) (fault-free code) (fault-free code) (fault-free code)

Verification Testing Testing + Formal verification Correct-by-construction
(against requirements) Model-based testing (model checking) (guaranteed)

Validation Testing Testing + Testing + Testing +
(of requirements) Simulation Simulation Simulation

Legend: Manual work / Focus (Semi-)automatic

The columns indicate various engineering approaches. From left to right, they employ
progressively more automation and computer assistance. The rows of the table indicate typical
steps involved in the development of supervisory controllers. The cells indicate for each approach
what is involved in the particular step. The green-colored cells indicate that the step involves
mostly, or at least significant, manual work for the particular engineering approach. Contrarily, the
gray-colored cells indicate that the step is (mostly) automated for that approach. As the steps with
more manual work generally require the most engineering effort, the green cells also indicate
where the engineering focus is for a particular approach. Bold texts in cells indicate changes
compared to the previous column.

Typical steps involved in the development of supervisory controllers, as represented by the rows
from top to bottom, are:

* Requirements design focuses on what a controller for a (sub-)system must do. Functional and
safety requirements may be specified, for instance requiring that pushing an emergency button
stops all motors. Extra-functional requirements may also be specified, for instance requiring
that a certain throughput should be achieved.



* Controller design focuses on how a controller should satisfy the requirements to efficiently
and safely control the system. For instance, the various control states of the system may be
specified, as well as how the controller reacts to changing sensor or other input signals by
controlling actuators, e.g., enabling a motor.

* Controllers may be realized in software. The software source code may for instance be
implemented using Java, C or PLC programming languages.

» Verification involves checking the realized controller against its requirements design and
controller design, to ensure that the controller is correctly realized. The system, controlled by
the controller, should behave as designed.

* Validation involves checking the realized controller and its design, to ensure that the right
controller is made. That is, the requirements must be correct and complete, such that the
controller ensures that the system operates safely and efficiently in all circumstances.

Typically, the various engineering approaches as represented by the columns from left to right, can
be characterized as follows:

» Traditional engineering is document-based. Requirements are written down informally in
large requirement documents. They are used as input for controller design documents. The
documents are then handed over to a different person, team or supplier, for the
implementation. Implementation of the controller in software is done through manual coding.
Verification and validation involve testing at various levels, including unit testing, integration
testing and system testing. Traditionally, all five steps are performed manually, which is
laborious and error-prone.

* Model-based engineering or model-driven engineering automates the realization step, and
provides computer assistance especially for the verification and validation steps. It places
models at the center of attention. The controller is modeled in a formal way, allowing a
computer to interpret and analyze its behavior. That is, it is specified in a mathematically
unambiguous way, for instance using state machines. Such models are considered the single
source of truth. From them, all kinds of artifacts can be generated automatically, including the
software code of the controller’s implementation. This ensures that the code is fault-free and
behaves consistently with the behavior as expressed by the controller model. The models can
also be used to partly automate verification, for instance through the use of model-based
testing. Simulation models can be used to simulate the (controlled) system behavior and
validate the requirements during early phases of development.



* Verification-based engineering is a form of model-based engineering with computer-
assistance to automate the verification step. It uses formal verification, or model checking, a
mathematical technique that can automatically check the controller model against its
requirements. To employ formal verification, both the controller model and the requirements
must be formally specified. Formal verification then either indicates that the specified
requirements are guaranteed to be satisfied by the controller model, or it provides counter
examples that indicate in which situations they are not satisfied. This is exhaustive, as it
considers every conceivable scenario, unlike testing, which typically covers only a limited
number of scenarios. Through formal verification, the controller model can be iteratively
adapted to satisfy all specified requirements in every possible situation.

* Synthesis-based engineering is a form of model-based engineering with computer-assistance
to automate the design of the controller. It uses supervisory controller synthesis to
automatically synthesize a controller model from requirements and a simple model of the to-be-
controlled system. This mathematical technique guarantees that the synthesized controller
model satisfies all specified requirements. This makes verification of the controller model
against the specified requirements superfluous, as the synthesized controller model is
guaranteed correct-by-construction. With the controller design, realization and verification
either to a large degree being automated or unnecessary, the focus shifts to requirements design
and validation. This allows engineers to focus on what the controller should do, rather than how
it should achieve it.

The use of model-based engineering combined with computer-aided design, through formal
methods like formal verification and supervisory controller synthesis, has many advantages. It
allows to produce unambiguous, complete, consistent, and up-to-date specifications, leading to
higher quality controllers at similar or even lower effort and costs.

After this general comparison of the approaches, the following provides more detailed information:

Traditional engineering

Model-based engineering
* Verification-based engineering

» Synthesis-based engineering

1.2.1. Traditional engineering

The following figure shows a simplified development process for traditional engineering of
supervisory controllers:



Verification Validation

7 \ Manual ()‘ (L

Design documents: implementation Implementation of
* Requirements the controller
* Controller design (control software)
\ J J
Design (specification) Realization (implementation)

Traditionally, controllers are first specified in design documents. They for instance list their
functional and safety requirements, describe their control states and indicate when the controller
should actuate the various actuators depending on changing sensor signals.

Subsequently, the controller is manually implemented in software code through the use of a
programming language, such as PLC code for a PLC platform, or Java or C++ code for an industrial
PC.

Finally, the implementation is verified and validated, typically by means of testing. Verification
involves checking and ultimately ensuring that the controller satisfies its specified requirements.
Validation involves checking that the controller exhibits the desired behavior, and thus ensuring it
is the desired controller. Since a controller must satisfy its specified requirements, this includes
validating the requirements to ensure they are the desired requirements.

Downsides of traditional engineering

Traditional engineering has been around for a long time. Companies typically know what works
and what doesn’t, and how to work around the various challenging aspects of it. It can work well,
particularly for small and simple systems, developed by a well-managed but small team. However,
the approach has several disadvantages. These become especially apparent when applying it to
develop controllers for larger and more complex systems, developed by multiple teams, or with
some development activities outsourced to suppliers:

Ambiguity
It is extremely difficult to unambiguously write down the control requirements in a document.
Often textual descriptions in natural languages can be interpreted in various ways.

The domain expert who writes the requirements has a certain mental picture in their mind.
However, software engineers responsible for realizing these requirements in the software
implementation may interpret them differently after forming their own mental picture. There is
often a big gap between the specification of the design and its implementation.

The documents may also serve as input or as a contract to a supplier to develop the control



software. Then the impact and costs of ambiguity can be huge, much more so than when the
implementation is done in-house within the company.

Incompleteness and inconsistency

Besides the interpretation of the requirements also their completeness and consistency is
important. Often the normally occurring situations (happy flow) is adequately covered by the
requirements. However, the edge cases and exceptional circumstances are just as important,
especially when safety is of critical importance to the system.

Consider for instance requirements for when the hardware fails, such as when a cable breaks or
a sensor becomes defect. Such cases are often far more complex and the number of
combinations/interactions that has to be considered can be immense. Ensuring that the textual
descriptions of all these cases do not lead to inconsistencies is often practically undoable.

A good domain expert will be able to limit the number of mistakes, such as missing
requirements and contradictions in the requirements specification, but typically can’t
completely eliminate them. A good software/PLC engineer will surely spot some of the
remaining mistakes during the implementation and testing of the controller.

However, even thoroughly tested and delivered industrial code often still contains faults.
Furthermore, if the specification is incomplete, software engineers will make their own choices,
which may or may not match with what the domain expert had in mind. Again, working with
external suppliers, rather than doing the development in-house within the company, may
aggravate these concerns.

Multi-disciplinary systems
The multi-disciplinary nature of design versus implementation also plays a role. A domain
expert may know everything about the functional requirements of the system. The software
engineer, especially one from a supplier, may lack such knowledge. They come from different
domains, often use different technical terms, and thus essentially speak different languages. This
makes it more difficult for them to understand each other, and hinders communication.

Abstraction levels

Furthermore, there is a difference in level of abstraction between design and realization. The
control requirements are often written as functional specifications. For the implementation
numerous details of a lower abstraction level play a role, such as data structures, message
encodings and byte orderings. A functional specification typically does not concern itself with
such aspects. Again, people from different disciplines and domains may not be able to effectively
communicate with each other.

Mixing design with implementation aspects

The situation becomes even more complex if (unintentionally) during the design also
implementation aspects are incorporated into the functional specification. Then the clear
separation between design and realization is lost. This often leads to more misunderstandings,
which then requires more communication and collaboration to resolve.



Outdated documentation

Another aspect to consider for specifications in documentation, is that any changes, such as bug
fixes and new features, are often only implemented in the software. After a while the documents
become more and more outdated and thus unusable. This increases the gap between
specification and implementation.

1.2.2. Model-based engineering

Model-based design, model-based software/system engineering and model-driven engineering, are
related terms. They place models at the center of the entire development process and the entire
lifecycle of the system, including design, implementation and maintenance. The models fill the gap
between the specification and implementation.

Model-based engineering process

The following figure shows a simplified development process for model-based engineering of
supervisory controllers:

Verification Validation

Manual
implementation or
Design documents: ] Manual modeling code generation ( Implementation of
* Requirements > Controller model > the controller
* Controller design J L J (control software)
l I J
Design (specification) Realization (implementation)

At the center is a controller model, a model of a controller that unambiguously specifies how the
controller works. It precisely specifies how the state of the controller changes when a sensor signal
changes, and under what conditions and in which states an actuator may be turned on or off.
Ideally, the model has a mathematical foundation. It may for instance be modeled as one or more
state machines.

The controller model is manually modeled from design documents. They for instance list the
functional and safety requirements of the controller, describe its control states and indicate when it
should actuate the various actuators depending on changing sensor signals.

The controller model must be verified and validated. Verification involves checking and ultimately
ensuring that the system, controlled by the controller, satisfies its specified requirements.
Validation involves checking that the controller ensures the desired system behavior, and thus
ensuring it is the desired controller. Since a controller must satisfy its specified requirements, this
includes validating the requirements to ensure they are the desired requirements. This may be



supported by formal methods, methods with a mathematical foundation, and supported by
computer tools. For instance, a controller model may be simulated. This may reveal issues, that can
be addressed to improve the controller model.

The control software is typically implemented using a programming language, such as PLC code for
a PLC platform, or Java or C++ code for an industrial PC. This may for instance be done in-house
within the company, by different teams or departments, or by a supplier. While manual
implementation is possible, the code is often automatically generated from the controller model.

Benefits of model-based engineering

Model-based engineering directly addresses many of the downsides of traditional engineering:

Unambiguous and intuitive specifications

It is important that the models are formal models, with a mathematical meaning (semantics).
Examples of formal models are state machines to model controllers and logical formulas for
model requirements. The use of such formal models leads to unambiguous interpretation of
control requirements and controller behavior.

The use of the right formal language, in which control requirements can be specified in an
intuitive manner is essential. This is where domain specific languages (DLSs) play a role. Such a
language closely matches the world of the domain experts, such that they can directly write
their control requirements in a notation that fits how they think about the system. This leads to
readable and unambiguous specifications.

Besides specific to a domain, domain specific languages are also more restrictive in what you
can write down than a general programming language. While this seems to be a limitation, it is
actually their strength. Due to the limited number of concepts to consider, there are less
different ways to model a system. This further reduces ambiguity, due to more consistency and
simpler specifications.

Bridges the multi-disciplinary specification/implementation gap

Using a good domain specific language, both domain experts and software engineers can
understand and interpret the specification in the same way, regardless of their different
backgrounds. Obviously, the language must be rich enough to properly describe all relevant
aspects of the domain. It must also use a proper abstraction level.

Complete and consistent specifications through computer-aided validation and verification

The use of unambiguous formal models has even more advantages, as it makes it possible for a
computer to interpret and analyze the models. The limited concepts of the domain specific



language help to do so efficiently and scalably. Computers can with formal methods,
mathematical techniques, quickly and accurately analyze countless scenarios. This is a great
advantage compared to traditional document reviews.

An example of this is verification by means of model-based testing. Instead of manually writing
dozens or hundreds of tests, a computer can automatically generate thousands, millions or even
more tests from the controller model. This allows covering much more behavioral scenarios,
increasing confidence in correctness of the controller model and its implementation.

Another example of this is validation of the specification by means of simulation. Using
simulation various execution scenarios can be examined, to give insight into the behavior of the
system being controlled by the controller. This provides new insights that can be used to further
improve the specification. Especially for complex situations, which are difficult to understand,
this is of great value.

The use of computer-aided verification and validation often exposes issues in the specification.
Model-based testing for instance, may find that a certain scenario was not considered during
controller design, and therefore does not satisfy the requirements. The controller model may
then be adapted and tested again. This allows to effectively and iteratively improve the design,
leading to more complete and consistent specifications, and therefore to better quality
controllers.

Address issues early to reduce effort and costs

A great benefit of model-based engineering is that verification and validation can be done
already during the earlier phases of development, rather than only at later phases such as
implementation or testing. It is well-known in industry that the later a mistake is found and
fixed, the higher the effort and costs to do so. In practice, implementations developed using
model-based engineering approaches are often produced more efficiently and with less
mistakes. Through automation, changes can be incorporated more quickly into the models, and
these can automatically be analyzed again.

Furthermore, the benefit of discussions that may arise early on during the development process,
for instance about how the specification must be adapted if it is found lacking, is not to be
underestimated. It is of great value that so early on it is possible to discuss control requirements
and the behavior of the system during unforeseen circumstances, such as when a sensor is
defect.

Efficiently obtain correct-by-construction implementations

After several iterations the confidence in the controller specification is sufficiently high, and
thus the chance of incompleteness and inconsistencies sufficiently low, given the amount of
effort and money that can reasonably be spent during the development process. The
development process produces an implementation-independent model of the control logic, that
during the realization can be implemented. This may be done by a different team or department



within the same company, or even by an external supplier. The formal specifications can then
serve as a contract with the third party, allowing for more control. They can also be used to
perform acceptance tests on the implementation.

While the controller can be manually implemented based on the controller model, automatic
generation of the control software is often a better choice. Automation prevents the kinds of
subtle mistakes that humans make when they manually implement something, ensuring
consistency between the specification and the implementation. Automation also improves
efficiency. If the controller model is changed, with the push of a button a new correct-by-
construction implementation can quickly be generated from it.

Implementation-independent models separate design from implementation

Since a controller model is implementation-independent, there is a clear separation between
design (specification) and realization (implementation). It allows generating implementation
code for different platforms, such as industrial PCs or PLCs, with different programming
languages, such as Java, C or PLC code, for 32 or 64 bits architectures, etc. Additionally, controller
models are vendor-independent, allowing to for instance generate PLC code for PLCs from
different vendors. It is also possible to switch to a different platform or vendor at a later time, or
additionally generate code for other platforms or vendors.

Up-to-date models are the single source of truth

Model-based engineering places models at the center of attention. It is the models that are
adapted if they are functionally incorrect, have inconsistencies, or new functionality is required.
Techniques such as model-based testing, simulation, and code generation all operate on the
models. The models are therefore the 'single source of truth'. Contrary to documents, the models
will be maintained. They remain up-to-date as they are the basis of all development during the
entire life cycle of the system, including design, realization and maintenance.

The use of model-based engineering combined with computer-aided design through formal
methods thus has many advantages. It allows for producing unambiguous, complete, consistent,
and up-to-date specifications, leading to higher quality controllers at similar or even lower effort
and costs. However, specific forms of model-based engineering, such as verification-based and
synthesis-based engineering, can offer additional benefits.

Even though model-based engineering has many benefits, companies should not underestimate
how significantly different it is from traditional engineering. They should consider and manage the
challenges particular to this engineering approach.

Terminology

The following terminology is often used when discussing model-based engineering of supervisory
controllers:



Code generation

The automatic generation of correct-by-construction control software from a controller model.

Control requirements

Properties that a system must satisfy, even if they are not satisfied in the uncontrolled system.
Examples include functional and safety properties. They are called control requirements, or
simply requirements.

Control software

The implementation of the controller in software. For instance, PLC code for a PLC platform, or
Java or C++ code for an industrial PC.

Controller model

A model of a controller that unambiguously specifies how the entire controller works. Also
called a supervisory controller, or simply controller, in control theory. It precisely specifies how
the state of the controller changes when a sensor signal changes, and under what conditions and
in which states an actuator may be turned on or off.

Controller validation

The process of checking and ultimately ensuring that the system being controlled by a controller
exhibits the desired behavior, and thus ensuring that the controller is the desired controller.
Since a controller (model) must satisfy its specified requirements, this includes validating the
requirements to ensure they are the desired requirements.

Controller verification

The process of checking and ultimately ensuring that the controller satisfies its specified
requirements.

Domain-specific language

A modeling language with concepts specific to a certain domain. This can for be the domain of
supervisory controllers with concepts such as plants and requirements, or the domain of office
lighting systems with concepts such as lamps and occupancy sensors.

Formal method

A method with a mathematical foundation, typically supported by computer tools. For instance,


https://en.wikipedia.org/wiki/Control_theory

formal verification or supervisor synthesis.

Model

An unambiguous representation of all relevant concepts, ideally with a mathematical
foundation. For instance, a model of control requirements in the form of logical formulas, or a
model of a controller represented as a state machine.

Model-based development/engineering

Places models at the center of the entire development process and the entire lifecycle of the
system, including design, implementation and maintenance.

Modeling language

A language in which models can be specified, in an unambiguous way, and ideally also with
mathematical foundation.

1.2.3. Verification-based engineering

Verification-based engineering is a form of model-based engineering. It uses formal verification to
automate the verification that the controller model satisfies its requirements.

Verification-based engineering process

The following figure shows a simplified development process for verification-based engineering of
supervisory controllers:

Verification Validation

Manual
implementation or
Design documents: ] Manual modeling code generation ( Implementation of
* Requirements > Controller model > the controller
* Controller design J L J L (control software)
l I J
Design (specification) Realization (implementation)

The verification-based engineering process is very much similar to the model-based engineering
process. The only difference is the way the verification of the controller (model) against its specified
requirements is performed. Verification-based engineering uses formal verification, or model
checking, to mathematically prove a certain property holds. Such properties could for instance be
the absence of deadlock or livelock, or that a bridge may only open if its corresponding traffic lights



have been set to signal a red light. Formal verification can prove that such properties hold for every
conceivable scenario.

If a property does not hold, formal verification produces counter examples, typically in the form of
a sequences of inputs that lead to states in the controller model where the property is not satisfied.
This makes it possible to pinpoint the problem in the model, and address it. It is often an iterative
process to address such issues, perform verification again, address more issues, perform
verification again, etc. If no counter examples are produced, all verified properties are guaranteed
to be satisfied by the controller model.

To employ formal verification not only the controller model must be formally specified, but also the
properties to check. This means that the requirements are no longer specified in natural language
in documents, but in mathematically unambiguous specifications. An example is state machines
that define the order in which things may happen, such as that a certain sensor must go on before
an actuator can be enabled. Another example is logical formulas that indicate that certain
combinations of states in the controller models should never occur, e.g., they could indicate a
collision that is to be prevented.

Benefits of verification-based engineering

Verification-based engineering has all the benefits of model-based engineering. Additionally, it has
the following benefit:

Formal verification guarantees that the requirements are satisfied

Formal verification considers every conceivable scenario. It can therefore mathematically prove
that a specified requirement is satisfied by the controller (model). It is thus more powerful than
testing, which typically covers only a limited number of scenarios and is then not exhaustive.

Even though verification-based engineering has many benefits, companies should not
underestimate how significantly different it is from traditional engineering or even from lesser-
automated forms of model-based engineering. They should consider and manage the challenges
particular to this engineering approach.

1.2.4. Synthesis-based engineering

Synthesis-based engineering is a form of model-based engineering. It uses supervisory controller
synthesis (or simply supervisor synthesis) to automatically synthesize a correct-by-construction
controller model.

Synthesis-based engineering process

The following figure shows a simplified development process for synthesis-based engineering of
supervisory controllers:



/ Model-based \ Verification

Specrﬂcatlon and validation
~, | Supervisor synthesis Manual
Model of (supervisory implementation or -
uncontrolled system | | controller synthesis) ( Controller model ] code generation ( Implementation of
(plant model) > . > the controller
J (supervisor model)
(control software)
” Model of control )
requirements
(requirements

& model) y
| /| J

Design (specification) Realization (implementation)

As with general model-based engineering, at the center is a controller model with a mathematical
foundation. From the controller model, the control software can still be manually implemented or
automatically generated.

However, with synthesis-based engineering, the controller model is not manually modeled from
design documents. Instead, it is automatically generated from models of the uncontrolled system
(plant model) and control requirements (requirements model).

Verification to ensure that the controller (model) satisfies the requirements used for synthesis is
then superfluous, as the synthesized controller model is correct-by-construction. Verification may
still be needed for additional requirements that are not yet supported by synthesis, such as stronger
liveness requirements and timed requirements.

Validation that the controller model behaves as intended is still needed, because even though
synthesis guarantees that the synthesized controller correctly adheres to the specified
requirements, the specified requirements may not be the desired requirements. For instance, the
requirements could be incomplete, too restrictive, or contain other mistakes, resulting in the
system being controlled by the controller exhibiting behavior that is not desired or not showing
behavior that is desired.

Input: plant and requirements models

Supervisor synthesis requires two types of models as input. The first type of model is called a plant
model, after the concept of plant from control theory. Plant models describe capabilities or
behavior of a physical system 'as is', without any integrated control. They represent the possible
behavior of the uncontrolled system. The second type of model is called a requirements model.
Requirements models describe the requirements that the controller must adhere to. They model
restrictions upon the behavior of the plants, to ensure that only the desired behavior remains.

A plant model can for instance specify which sensors and actuators are present in the system. It
may also specify their interdependencies. For instance, a sensor that indicates that a gate is open
and a sensor that indicates it is closed, can under normal circumstances not be enabled at the same
time. A plant model is often modeled as a state machine. The following figure shows as an example
a the combined plant model for the two gate sensors:


https://en.wikipedia.org/wiki/Plant_(control_theory)
https://en.wikipedia.org/wiki/Control_theory

closed _off open_on

e . T d _-E\‘i
—» closed in_between open
\\H,______f“" M_____,-/
closed_on open_off

Initially it is closed. As the gate is opened, the gate closed sensor goes off, and the gate is somewhere
in between. Then it can be closed again, making the gate closed sensor go on. But the gate can also
keep going further open, until it is fully opened, and the gate open sensor goes on. There is can be
closed again, making the gate open sensor go off. The plant model clearly states that it is not
possible for the gate to be open and closed at the same time, as the plant model can only be in one
state at a time.

Actions, such a sensor going on or off, or an actuator being turned on or off, are called events.
Supervisor synthesis distinguishes two types of events, controllable and uncontrollable events.
Controllable events can be controlled by the supervisory controller. Actuators are typically
modelled as controllable events, such that the supervisory controller decides when to actuate them.
Uncontrollable events operate autonomously, from the perspective of the supervisory controller. A
controller can not prevent such events from occurring in the system. For instance, a user may push
a button and the corresponding sensor will indicate whether the button is pushed or not. The
events to indicate changes in the status of the sensor will happen. The supervisor can not prevent
this. Another example of uncontrollable events is limit sensors of movements. When a movement is
completed, its limit sensor will be activated, leading to an uncontrollable event being fired.

Plant models at the relatively low abstraction level of sensors and actuators are quite common.
However, modeling and controlling (sub-)systems at a higher abstraction level is possible as well.
See for more information the section on supervisory controllers.

A requirements model captures requirements. It may specify functional requirements, safety
requirements, etc. For instance, the motor to open a gate may only be activated once the barrier to
stop traffic is fully closed. Control requirements can also be specified as state machines, but often
the use of a logical formula is more intuitive. Combining them is also possible. Well-formulated
logical formulas are easy to understand, even for people without a mathematical background. As
an example, consider a requirement in three forms: natural language, mathematical formula, and
modeled in CIF:

* Natural language: "The actuator to open the gate may only be activated if the barrier is fully
closed.”

* Mathematical formula: gate_open_actuator.c_on = barrier_sensors.closed

* Modeled in CIF as a state/event exclusion requirement:



requirement gate_open_actuator.c_on needs barrier_sensors.closed;

Supervisory controller synthesis

Supervisory controller synthesis generates from the plant and requirements models a controller
model, a model of the control logic, named a supervisor or supervisory controller. The synthesized
supervisor is correct-by-construction, i.e., it satisfy all the requirements in every situation.

The supervisor may be represented as another state machine, but it may for instance also be a list
of conditions under which actuators may be activated or deactivated. The synthesized supervisor as
a state machine, or the plant model together with the supervisor in the form of extra synthesized
control conditions, forms the controlled system.

The controlled system is guaranteed to satisfy the following properties:

» Safe: It satisfies all specified requirements in all situations that the specified uncontrolled
system can be in.

» Controllable: It only limits controllable events of the plant, e.g., it may prevent enabling or
disabling an actuator, but can’t prevent a sensor from going on or off.

* Non-blocking: It doesn’t block, i.e., a marked state can always be reached from every reachable
state, thus ensuring a form of liveness.

* Maximally permissive: It does not impose more restrictions than strictly necessary to enforce
the previous properties, i.e., it is maximally permissive. In other words, the controlled system
permits all safe, controllable, and non-blocking behaviors, i.e., it is minimally restrictive.

In practice the terms supervisor and controller are often used interchangeably. Formally however,
they can be different. A supervisor is maximally permissive and may still allow multiple (safe)
choices, for instance between enabling multiple different actuators, or between enabling one
actuator and disabling another one. A controller is considered to explicitly choose specific
controllable events rather than allowing multiple ones.


https://en.wikipedia.org/wiki/Liveness

Benefits of synthesis-based engineering

Synthesis-based engineering has all the benefits of model-based engineering. Additionally, it has the
following benefits:

Computer-aided design for improved quality at reduced effort and cost

Computer-aided design and automation shorten the development cycle and reduce human
errors. This improves the quality and reliability of controllers, and reduces effort and costs.

More concretely, supervisor synthesis provides computer-aided design assistance. It can for
instance automatically detect conflicting requirements. It will also detect that a certain activator
may never be enabled in a certain state, because under certain specific conditions this may later
lead to an unavoidable unsafe state. For complex systems, this kind of situations are often
difficult to foresee for human beings. It is therefore difficult to correctly manually model them
in a controller model.

Focus on the what rather than the how

With synthesis-based engineering the controller model is automatically synthesized. From it, the
implementation is automatically produced through code generation. Verification is (to a large
degree) not needed as the implementation is correct-by-construction. The focus therefore shifts
to requirements design and validation. Engineers can thus focus on 'what should the controller
do' (its requirements), rather than on 'how must the controller achieve this' (the controller
design and implementation).

An example is specifying a First-In-First-Out (FIFO) requirement. While specifying it may be
quite easy, realizing the requirement in a controller model may be complex due to the various
situations that may arise in the system. Supervisory controller synthesis can evaluate all possible
combinations of conditions and synthesize a controller that is mathematically correct for all of
them. This kind of design automation is even more useful when multiple, complex and related
requirements need to be considered. The synthesized supervisor is correct-by-construction for
all requirements in all situations, preventing human errors.

Verification exposes problems, synthesis solves them

Synthesis-based engineering goes far beyond verification-based engineering. Formal verification
exposes problems. It tells you that the controller model is not correct and in which situations,
and you need to iteratively adapt it yourself. Each time formal verification produces a counter
example to indicate a requirement violation, the controller model needs to be manually adapted.
Contrary, supervisor synthesis provides solutions. It automatically synthesizes a controller
model that satisfies all the requirements. Synthesis produces in one go a supervisor with all the
additional conditions that must be enforced to ensure all requirements are satisfied. This makes
verification of the controller model against the requirements from which the supervisor was
synthesized superfluous, as the synthesized controller model is already correct-by-construction.



Maintain maximum design space freedom

Maximal permissiveness ensures that maximum design space freedom is maintained. When
manually designing a controller, an engineer may favor simple control conditions that severely
limit the design space. As synthesis produces maximally-permissive supervisors, it imposes
minimal restrictions, while still satisfying all requirements. This leaves design space freedom to
e.g. choose performance-optimal solution among safe alternatives. A performance-optimal
controller may for instance be derived from a supervisor model that allows multiple (safe)
choices.

Supports a comprehensive modular design and efficient incremental engineering

Each part of the plant and each requirement can be specified separately. This way it is easy to
adapt specific plants or requirements, or add new ones. Modular specifications thus allow for
efficient incremental engineering, as after each change a simple re-synthesis is enough to obtain
a new correct-by-construction controller.

Supports reuse and standardization

The separately specified plants and requirements can even be put in libraries with reusable
standardized building blocks. This allows engineers to easily build up new specifications from
existing proven building blocks, combining them in different ways. Ultimately this leads to more
uniformity and improves efficiency.

Intuitive specifications with fine-grained requirement traceability

Each plant and requirement can be specified separately, and has a clear purpose. This provides a
good overview of the control requirements, and allows for fine-grained requirement traceability.
This unlike the controller model itself. There, one requirement can have an effect on various
parts (states) of the controller. It can thus be spread out over the controller model, and mixed
with other requirements. Clear modular specifications avoid hiding undesired and unneeded
behavior in a large/complex controller.

See the synthesis-based engineering example section for a concrete example that shows the power
of synthesis.

Even though synthesis-based engineering has many benefits, companies should not underestimate
how significantly different it is from traditional engineering or even from lesser-automated forms
of model-based engineering, such as verification-based engineering. They should consider and
manage the challenges particular to this engineering approach.

Terminology

The following terminology is often used when discussing synthesis-based engineering of
supervisory controllers, in additional to model-based engineering terminology:



Controllable event

An event that is controlled (enabled or disabled) by the controller. Events to actuate (turn on or
off) an actuator are often controllable events.

Controlled system

The uncontrolled system together with a supervisor or controller that controls it. This may be
represented as a single state machine, or as a combination of the _plant model with the supervisor
or controller model.

Controller

A controller model that explicitly chooses specific controllable events, rather than allowing
multiple ones as a supervisor may do. When this distinction is not relevant, supervisor and
controller are often used interchangeably.

Correct-by-construction formal method

A formal method that guarantees that the result of the method satisfies all requirements.

Event

An action representing something that can happen in the system. For instance, there may be
low-level actions for sensors going on or off, and actuators being turned on or off. There may
also be higher level actions, such as a command to move an object from one location to another,
a command to turn an entire subsystem on or off, or an event through which a subsystem
indicates that an error has occurred.

Synthesis-based engineering

A form of model-based engineering that uses supervisory controller synthesis (or simply
supervisor synthesis) to automatically synthesize a correct-by-construction controller model.

Supervisor

A maximally permissive controller model that may still allow multiple (safe) choices. Unlike a
controller, it may for instance allow a choice between enabling multiple different actuators, or
between enabling one actuator and disabling another one. When this distinction is not relevant,
supervisor and controller are often used interchangeably.



Supervisor synthesis

A correct-by-construction formal method that automatically synthesizes a supervisor. It involves
the automatic generation, or synthesis, of a correct-by-construction controller model from a
simple model of the to-be-controlled system and a model of the control requirements. This is also
called controller synthesis or supervisory controller synthesis. Supervisor synthesis makes
verification of the resulting supervisor model against the requirements from which it was
synthesized superfluous. Validation of the resulting system being controlled by the controller
(model) is still needed to ensure the specified requirements are indeed the desired
requirements.

Uncontrollable event

An event that operates autonomously, from the perspective of the controller. Such events are not
controlled by the controller, which can thus not prevent them from occurring. For instance,
events of a sensor could indicate that a button was pushed or released. And events of a
movement limit sensor could indicate that a movement has reached the end position, or that the
moving object is no longer at that position.

Uncontrolled system / plant

The uncontrolled system is the system 'as is', without any control. It is also called a plant in
control theory. For instance, at a low abstraction level, this could be the individual actuators and
sensors of a system. At a higher abstraction level, it could be a collection of controllers for
subsystems.

1.3. Synthesis-based engineering example

To demonstrate the value of synthesis-based engineering, let’s look at an example. The following
figure illustrates an example manufacturing system that processes products:

(-

enter

OP1 done1
start \
INOUT =——3» DISP CHK

exit /
do2 OP2 y Xv
finished
nishe DONE <&

leave

Iy

/ \



https://en.wikipedia.org/wiki/Plant_(control_theory)
https://en.wikipedia.org/wiki/Control_theory

Products enter at the INOUT place. From there production can start by moving them to the
dispatcher (DISP). The dispatcher dispatches a product (do1 or do2) to one of two operators (OP1 or
OP2) that perform the same operation. Once the operation is completed (donel or done2), the
product is moved to the checker (CHK). The checker determines whether the operation has
completed successfully or has failed. If it has failed, the system must redo the operation on that
product. This may be repeated until the operation is successful. The product must then leave the
processing loop, moving to DONE. It is then finished and moves back to INOUT. There it may exit the
system.

The gray boxes indicate places where at most one product can be located at a time. The moving of
products through the system is visualized by the labeled arrows in the figure. Each arrow
corresponds to an actuator under the control of the controller. The controller can thus decide when
to move products from one place to another. A sensor indicates the result of the check performed
on processed products, indicating whether they are OK or not. This sensor works autonomously
and is thus not controlled by the controller.

1.3.1. FIFO requirement

The example system, without any controller that controls it, already ensures that:

Products that enter can only start, preventing them from exiting without having been
processed.

Products that failed processing must redo the operation.
* Successfully processed products must leave the operation area.

* Once a product passed finished it must exit, preventing it from being processed again.
For this example, we consider only a single requirement:

* Products must enter and exit the system in FIFO order.
That is, if one product enters earlier than another, it must also exit earlier.

Without additional control, the system does not satisfy this requirement, as it is possible for
multiple products to enter the system and subsequently be processed concurrently. Then, if a later
product finishes the operation earlier, or the earlier product requires rework, the later product
may be done sooner and thus exit the system earlier. The controller must restrict the behavior of
the system such that it satisfies the requirement. It can only do so by controlling the movement of
products through the system.

The FIFO requirement is specified in natural language as a short and simple sentence. It can
similarly be quite easily modeled, by tracking the order that products enter and exit the system.
Each product that enters the system is given a unique identifying number, one higher than the
previous product. As products exit the system, the identifier of the last product that exited the
system is stored (lastExitld). When a product is about to exit the system, it is in the INOUT place. If
the identifier of the current product on the INOUT place is given by curld, then the requirement can
be formulated as:

e curld = lastExitld + 1



See the section on synthesis-based engineering in practice example section for how the example
system and its requirement can be modeled in CIF.

1.3.2. Synthesis-based engineering

There are various ways to ensure the FIFO requirement holds. A silly solution is to never allow
products to enter the system. As there are then no products in the system, products also never leave
the system. Therefore, all (non-existent) products are in FIFO order. Another slightly more useful
option is to only allow a single product to be processed at a time. This would however severely limit
the productivity of the system. It is actually not that trivial to decide the exact conditions under
which the products may move, while still ensuring the FIFO requirement is satisfied.

We can however automatically compute the conditions that must hold for each movement by
applying supervisory controller synthesis. This computes for each movement the minimal
restriction that must be applied to enforce the requirement. Through synthesis, we obtain a
supervisory controller that restricts four movements:
1. Movement donel is only allowed if the following two conditions both hold:
o Either there is no product at the DISP place, or it is a later product than at the OP1 place.
o Either there is no product at the OPZ2 place, or it is a later product than at the OP1 place.
2. Similarly, movement doneZ is only allowed if the following two conditions both hold:
o Either there is no product at the DISP place, or it is a later product than at the OPZ2 place.
o Either there is no product at the OP1 place, or it is a later product than at the OP2 place.
3. Movement start is only allowed if one of the following two conditions holds:
o At the DISP place, OP1 place, OP2 place, and CHK place, there is in total at most one product.

o At the DISP place, OP1 place, and OP2 place, there is in total at most one product. There is
also a product at the CHK place and the check indicates the product was successfully
processed.

4. Movement enter is only allowed if less than four products are in the system.
But why are these the 'optimal’ restrictions?
It is important to realize that:

A. If a product is checked and found to be successfully processed, it can only leave. It can not be
reprocessed (redo). If a product is moved to CHK too early, a product that should exit the system
before it can’t overtake it anymore. This could lead to a violation of the FIFO property if another
product that must exit earlier is for instance still being processed.

B. Only at most two products may be in the processing loop at any time. That is, at most at two of
the DISP, OP1, OP2 and CHK places there may be a product, at any time. This way, if a product
keeps failing to be processed successfully, it can be redone over and over again, while the other
product is at one of the operators. With three or more products in the processing loop, this is
not possible. An exception to 'at most two products in the processing loop' rule is when a
product has been checked and found to be successfully processed. Then, a third product may be
present, as the successfully processed product can then leave the processing loop and at most



two products will remain in the processing loop.
Then the supervisor restrictions are quite logical:

» The first and second restrictions indicate when a product may move to be checked. These two
restrictions follow directly from realization A. A product X may only be moved to be checked, if
there is no product that must exit earlier. Obviously, moving a product to the checker is
physically only possible if there is a product at an operator, as otherwise there is no product to
move. Also, it is only physically possible to move a product to the checker there is not already a
product at the checker, as each place can only hold one product. This leaves only the dispatcher
and other operator as places to be checked. If there would be an earlier product at the
dispatcher or other operator, such a product would not be able to overtake the product about to
be moved to the checker, leading to a violation of the FIFO property. Hence, both restrictions
have two conditions, one for the dispatcher and one for the other operator. Either there must be
no product at those places, or it is later product.

* The third restriction indicates when a product may start processing. Either one of its two
conditions must hold for the start movement to be allowed. This directly follows from
realization B. The first condition follows from the 'at most two products in the processing loop'
rule. At most one product may be in the processing loop for another to enter it. The second
condition describes the exception to this rule. There may be two products in the processing loop
if one of them is a successfully processed product about to leave the processing loop.

» The fourth restriction indicates when a product may enter the system. It only allows a product
to enter if there are less than four products in the system. This means that the restriction
ensures that at most four products are in the system at any time. Through realization B we
know at most three products may be in the processing loop. Then only at most one of the INOUT
and DONE places may contain a product, for a total of four products in the system. To
understand why this is the case, consider the following:

o A product could be at the INOUT place. But then no product must be at the DONE place. If
there were a product at the DONE place, there would be products at the INOUT, DONE and
CHK places. The product at the CHK place could then not move to the DONE place, as that
already has a product. Similarly, the product at the DONE place could then also not move to
the already occupied INOUT place. And the product at the INOUT place could then not move
to the DISP place, as the processing loop is already maximally filled. This would mean no
product could move anywhere. This kind of deadlock is prevented by the fourth condition.

o A product could be at the DONE place. But then, by similar reasoning, no product must be at
the INOUT place.

All of this is certainly a lot to consider! Would you have been able to figure all of this out by
yourself? And how long would that have taken you? Considering this is only a simple example
system with only one non-trivial requirement, it is clear that having some computer assistance
when engineering a more realistic controller can be very useful.

1.3.3. Example benefits of synthesis-based engineering

Finally, let us consider some of the benefits of synthesis-based engineering as it relates to this
example:



* Synthesis automatically computes the optimal control conditions. It should now be clear that
this can save a lot of effort.

* Manually engineering the controller can be quite tricky. It could easily lead to mistakes if
certain scenarios are not properly accounted for. For instance, a restriction could be missed, or
one of them could be incorrect. Synthesis can thus also reduce human error.

* Through synthesis you only have to specify the requirement and synthesis automatically
generates a correct-by-construction controller, from which you can automatically generate the
implementation. For the simple to specify but difficult to implement example requirement, this
allows you to focus on what the controller should do (the requirement), rather than how the
controller should do this (the complex control conditions and their implementation).

* As an alternative to synthesis, we could apply formal verification on the system model to check
whether the FIFO requirement holds. However, as the requirement does not hold on the system
without a controller, we would get only a counter example representing a scenario indicating
where the requirement does not hold. Likely, it would take several iterations and quite some
thinking to manually arrive at the exact correct control conditions. Compared to formal
verification, synthesis produces all the correct control conditions, automatically and in a
single iteration.

* An engineer that develops the controller manually, may well impose severe restrictions to avoid
much of the complexity of satisfying the FIFO requirement. The control conditions produced by
synthesis however, are minimally restrictive. Products may enter the system, start processing,
be processed in parallel, and leave the processing loop, whenever possible. This ensures the
maximum throughput of the system can still be achieved.

» Synthesis-based engineering allows for a modular design. The various parts of the system, as
well as the requirement, can be modeled separately. This makes it easy to adapt the system
(model), to for instance allow products that do not require processing to bypass the processing
loop. With minimal changes to the system model, and no changes to the requirement, a new
supervisor can then be produced by the push of a button. This allows for incremental
development of the system and its controller.

And again, consider that this is only a simple example system, with only a single requirement.
Synthesis-based engineering has even more value when multiple, complex and related
requirements need to be considered, or when controllers for many similar yet different systems
need to be developed. See the section on benefits of synthesis-based engineering for further
benefits of the approach.

Even though synthesis-based engineering has many benefits, companies should not underestimate
how significantly different it is from traditional engineering. They should consider and manage the
challenges particular to this engineering approach.

1.4. Synthesis-based engineering in practice

This section explains concretely how to use the CIF language and toolset to apply synthesis-based
engineering of supervisory controllers. Before reading this section, please familiarize yourself with:

* The basics of the CIF language.

* The synthesis-based engineering approach.



Development process

The process to develop supervisory controllers using the synthesis-based engineering approach
typically following several steps. We’ll briefly discuss each of the steps and provide some practical
guidance:

Modeling the events

Modeling the actions that can happen in the system as events.

Modeling the plant

Modeling the plant automata that represents the event behavior of the to-be-controlled system.

Modeling plant relations

Modeling the relations between the various plant automata.

Modeling the requirements

Modeling the requirements that restrict the behavior of the plant.

Marking

Dealing with marking of the plant and requirement automata.

Supervisor synthesis

Performing supervisor synthesis on the plant and requirements to automatically synthesize a
supervisor.

Verification and validation

Verifying and validating that the synthesized supervisor controls the system correctly and as
desired.

Controller implementation

Implementing the validated supervisory controller using automatic code generation.
Advanced topics
Furthermore, the following more advanced information is available:

Incremental controller development

Explains how to incrementally develop your controller to prevent commonly encountered issues
when applying synthesis-based engineering.

Resolving issues with too limited behavior

Explains how to resolve issues with too limited controlled system behavior, for instance due to
conflicting requirements, revealed through synthesis or validation.

Supervisor synthesis performance

Explains how to resolve performance and memory issues for supervisor synthesis.

Non-monolithic supervisor synthesis

Explains how to incrementally develop your controller to prevent commonly encountered issues



when applying synthesis-based engineering.
Practical example
For how this process can be used in practice, based on an example, see:
» Synthesis-based engineering example

* Synthesis-based engineering in practice example

1.4.1. Development process

Modeling the events

The first step to apply synthesis-based engineering in practice is to identify the actions that can
happen in the system, and model them as controllable and uncontrollable events.

Controllable events are under the control of the controller. They are outputs of the controller and
inputs for the system being controlled. The controller determines when these events occur. Typical
examples include turning an actuator on or off, or enabling or disabling a sub-system.

Uncontrollable events are outside of the control of the controller. They are inputs for the controller
and outputs of the system being controlled. The controller can not prevent such events from
occurring in the system. Typical examples include a sensor going on or off, such as for a button
push sensor or a movement limit sensor.

The events can be modeled in CIF as follows:

uncontrollable u_button_pushed, u_button_released;
controllable c¢_turn_motor_on, c_turn_motor_ off;

Controllable events are by convention given names starting with c_, while uncontrollable events
start with u_.

For channels, a special kind of events, see the CIF language tutorial:

¢ Channels
» Dataless channels

* Combining channel communication with event synchronization

The next step in the process is to model the plant.

Modeling the plant

After modeling the events, the plant needs to be modeled. It represents the uncontrolled system, the
system 'as is' without the controller.



Typically, for low-level controllers, start with a plant automaton per sensor and actuator. For the
common case of digital sensors and actuators, model the automata with two locations, one where
the sensor or actuator is off, and one where it is on. Which location should be the initial location
depends on the specific sensor or actuator. Digital sensors can go on and off, and as such have two
associated uncontrollable events. Similarly, digital actuators can be turned on or off, and have two
associated controllable events.

Here are some examples of typical plant automata for low-level sensors and actuators:

plant Button:
uncontrollable u_pushed, u_released;

location Released:
initial; marked;
edge u_pushed goto Pushed;

location Pushed:
edge u_released goto Released;
end

plant Lamp:
controllable c¢_on, c_off;

location Off:
initial; marked;
edge c_on goto On;

location On:
edge c_off goto Off;
end

The events that belong to a specific sensor or actuator are typically placed within the
corresponding automaton. Other events are often placed outside the automata.

See a later step for how to deal with marking. The CIF language tutorial has lessons on using
variables, guards and updates.

The next step in the process to apply synthesis-based engineering in practice is to model plant
relations.

Modeling plant relations

After modeling the plant, for instance the individual sensors and actuators, the relations between
the plant automata are to be considered. These relations should be physical relations, representing
behavioral restrictions present in the actual uncontrolled system.



For instance, consider a movement with two limit sensors:

plant UpSensor:
uncontrollable u_on, u_off;

location Off:
initial; marked;
edge u_on goto On;

location On:
edge u_off goto Off;
end

plant DownSensor:
uncontrollable u_on, u_off;

location Off:
initial; marked;
edge u_on goto On;

location On:
edge u_off goto Off;
end

Most likely the two sensors physically can’t both be on at the same time. The individual plant
automata of the two digital sensors however, can both be in their On states, as they are not yet in
any way related. The easiest way to specify such a relation is to use a state plant invariant:

plant invariant not (UpSensor.On and DownSensor.0On);

Alternatively, you may combine multiple plants into a single plant. To merge some plants, manually
compute/model the product of the plants, and remove the original plant automata. Then, to express
the relationship, remove the behavior that is not physically possible. However, typically using a
plant invariant is easier.

An alternative physical relationship, is the relation between sensors and actuators. In such cases,
the relationship with the sensor(s) can usually be added directly to the actuator plant(s).

By correctly incorporating all the physical restrictions present in the actual system, the tools can
use this knowledge during synthesis. Essentially, by modeling the physical relations/restrictions, the
uncontrollable events are enabled in much less (combinations of) locations of the plant automata.
This means that the requirements are much less likely to block uncontrollable events.

In other words, the modeled relationships of the plants restrict the behavior of the plant automata.
However, these restrictions are also present in the physical system. Hence, without modeling such
relationships, the plant model has more behavior than the physical system. Once the plant relations
are correctly modeled, you may assume this relationship in the requirements, meaning you may
assume that certain uncontrollable events can physically not occur in certain locations. The tools



will then have enough knowledge of the system to come to the same conclusions.

For instance, assume a certain sensor signal can only occur when the corresponding actuator is
enabled. A movement limit sensor may for instance only be able to go on once a movement
completes, which in turn can only happen by enabling the corresponding movement actuator.
Modeling this relation ensures that 'blocking' such sensor signals in the requirements, when the
actuator is off, is no longer considered 'illegal' behavior.

The next step in the process to apply synthesis-based engineering in practice is to model the
requirements.

Modeling the requirements

After modeling the plant and plant relations, the requirements should be modeled as well.

The hardest thing about modeling the requirements, is that you have to think in restrictions, rather
than in use cases. So, rather than 'first do this, then do that, then do that or that other thing, etc/,
you should think 'this or that is only allowed if/after this or that other thing'. Requirements should
be as small and orthogonal as possible.

Event-based requirements are modeled as requirement automata. The simplest event-based
requirements have only two locations, and form a loop of only two edges. Here is a typical example
requirement that controls the plants from the section on modeling the plant. It ensures that the
lamp is on while the button is pushed, and off while it is released:

requirement LampOnWhileButtonPushed:
location Released:
initial; marked;
edge Button.u_pushed goto Pushed;
edge Lamp.c_off;

location Pushed:
edge Button.u_released goto Released;
edge Lamp.c_on;
end

We can also model the requirements in a more state-based manner (referring to locations of
automata) or data-based manner (referring to locations of automata, as well as using variables,
guards, updates, and invariants), which is often shorter and simpler. The requirement above can be
modeled in a state-based manner using state/event exclusion requirements as follows:

// Lamp on only while button is pushed.
requirement Lamp.c_off needs Button.Released;
requirement Lamp.c_on needs Button.Pushed;

Having requirements block uncontrollable events can easily lead to unnecessarily restricting too



much of the system behavior. As mentioned in the section on modeling plant relations, correctly
modeling such relations makes this easier.

Generally, it is better to as much as possible use requirements that are pure restrictions. That is, use
state-based requirements (mutual state exclusion and state/event exclusion requirements) instead
of event-based requirements (requirement automata), where applicable. Requirement automata
may introduce additional state, which can lead to reduced performance. Using pure restriction
requirements you are also less likely to unnecessarily restrict too much of the system behavior.

The CIF language tutorial has lessons on using variables, guards and updates.

The next step in the process to apply synthesis-based engineering in practice is to deal with
marking.

Marking

After modeling the plants and requirements, marking should be considered. Every automaton,
whether plant or requirement, must have at least one marked location. A marked location is a
location that indicates a safe, stable, or resting state. Synthesis will guarantee that a marked
location can always be reached, thus ensuring a form of liveness.

Physical systems typically keep operating, repeating their behavior. Therefore, in practice, the
entire system can often be brought back to the initial state. As such, it is then typically enough to
make the initial locations marked.

An exception is automata that have some kind of initialization behavior/sequence. For such
automata, make the first location that is part of the loop after the initialization sequence, a marked
location. The locations from the initialization sequence can no longer be reached after initialization
is finished. The first location after that initialization sequence is part of the 'normal' behavior and
can be seen as the initial location of the behavior after initialization.

Note that marking every location reduces the value of supervisor synthesis, as it essentially disables
its non-blockingness guarantee. This may hide issues related to deadlocks and livelocks.

For advanced uses of marking, see the CIF language tutorial section on marker predicates.

The next step in the process to apply synthesis-based engineering in practice is to synthesize a
supervisor.

Supervisor synthesis

Having modeled the plants and requirements, the supervisory controller can automatically be
synthesized. Supervisory controller synthesis (or simply supervisor synthesis) automatically
generates a supervisor, from the models of the uncontrolled system (plant model) and control
requirements (requirements model).

The synthesized supervisor is correct-by-construction, satisfying various properties. It is safe


https://en.wikipedia.org/wiki/Liveness

(satisfies all the requirements), controllable (limits only controllable events, not uncontrollable
ones), is non-blocking (does not block, a form of liveness), and is maximally permissive (imposes no
more restrictions than is necessary).

CIF supports supervisor synthesis through the following tools:

» Data-based supervisory controller synthesis tool

» Event-based supervisory controller synthesis tool

The data-based synthesis tool is generally more efficient and supports a larger subset of CIF
language concepts. It is therefore recommended over the event-based synthesis tool.

The documentation of these tools provide further details on how to use them.

The next step in the process to apply synthesis-based engineering in practice is to perform
verification and validation.

Verification and validation

After applying supervisor synthesis it is time to analyze the resulting supervisor model, using
verification and validation, and adapt the plants and requirements if any issues are found.

Verification

Verification to ensure that the synthesized supervisor satisfies the requirements that were used for
synthesis is superfluous, as the synthesized model is correct-by-construction. However, verification
may still be needed for additional requirements that are not yet supported by synthesis, such as
stronger liveness requirements and timed requirements.

The synthesized supervisor model should be checked for various properties using the controller
properties checker tool. Further verification may be performed by transforming the supervisor
model to formats of external verification tools, such as mCRL2 and UPPAAL, and then using such
tools to perform the actual verification.

Validation

Furthermore, the supervisor should be validated to ensure it behaves as intended. The specified
requirements could not be the desired requirements, as they could for instance be wrongly
specified or too strict, resulting in the system being controlled by the controller exhibiting
unwanted or insufficient behavior.

The CIF simulator can be used to simulate CIF specifications. Especially when combining this with
SVG visualization and interactive simulation, it is a very powerful way to validate whether the
supervisory controller controls the system as intended. This may for instance reveal that additional
requirements are needed, or existing requirements need to be adapted.

Next steps

In case issues are found through verification or validation, these need to be addressed. Typically



this involves changes to either the plant model or requirements model. After such changes, the
supervisor can be re-synthesized automatically. Changes can be made iteratively, until confidence
in the correctness of the controller is high enough.

The next step in the process to apply synthesis-based engineering in practice is then to implement
the supervisory controller.

Controller implementation

Once a supervisory controller has been synthesized, verified and validated, it is time to implement
it. The control software is typically implemented using a programming language, such as PLC code
for a PLC platform, or Java or C++ code for an industrial PC. This may for instance be done in-house
within the company, by different teams or departments, or by an external supplier.

While manual implementation is possible, the code is often automatically generated from the
controller model. This automatically produces correct-by-construction code by generating the code
from the correct-by-construction controller model. Automation prevents the kinds of subtle
mistakes that humans make when they manually implement something, ensuring consistency
between the controller model and implementation. Automation also improves efficiency. If the
controller model is changed, with the push of a button a new correct-by-construction
implementation can again quickly be generated.

CIF supports code generation through the following tools:

* CIF PLC code generator: for PLC programming languages

* CIF code generator: for various other programming languages
The documentation of these tools provide further details on how to use them.

Once code has been generated, it should be tested on the actual system. This may reveal additional
issues. For instance, the behavior of the system may not be properly captured in the plant model, or
the inputs and outputs of the system may be incorrectly connected to the controller.

With a working implementation of the controller, this concludes the process to apply synthesis-
based engineering in practice.

1.4.2. Advanced topics

Incremental controller development

When developing a controller, it is often best to start with just a small part of the system.

You first develop a controller for that small part, and verify and validate it to make sure it works
properly. Then, you extend the controller to work for a larger part of the system, and you keep
repeating this until the controller controls the entire system. That is, you go through the entire
development process (including among others specification, synthesis, verification/validation,



implementation) each time. And then you increase the part of the system covered by the plants and
requirements for each iteration. Typically, for low-level controllers you should start with no more
than a few sensors and actuators, with their corresponding events.

This incremental development approach makes it easier to for instance figure out why your
controller doesn’t behave as expected, which of your requirements are conflicting, or for what
other reason a supervisor can’t be synthesized.

Resolving issues with too limited behavior

Supervisor synthesis always produces correct-by-construction supervisors, based on the plant and
requirements models that you provide as input. However, if you for instance provide too restrictive
or conflicting requirements, or forget to model the plant relations, you may not get the desired
controlled system behavior. Such issues are often found during verification and validation.

Another way this may manifest itself, is by supervisor synthesis producing an 'empty supervisor'
error. This means that synthesis has determined that no supervisor can ever safely satisfy the
requirements that you specified.

However, the resulting supervisor supervisor doesn’t have to be 'empty'. Synthesis could also have
restricted so much of the behavior that little behavior remains, in order to satisfy the (conflicting)
requirements you provided. The resulting supervisor could for instance have only a few states, but
it may also have thousands or millions of states, while still missing important system behavior.

In such cases, where the resulting supervisor is not what you expect or desire, you need to go back
to your plants and requirements. Here are some hints to resolve this kind of problems:

» Try to use an incremental development approach. This ensures that if you encounter problems
with missing behavior, you can be reasonably sure the problem is in the part you added since
the last working version. If on the other hand you put the entire system in your model at once,
and you get for instance an 'empty supervisor' error, it is much more difficult to track down the
cause.

* Try to as much as possible use requirements that are pure restrictions.

* Make sure you have at least one marked location per automaton (plant as well as requirement
automata). Usually, marking the initial location is sufficient. See also the section on dealing with
marking.

* Make sure your initial and marked locations are consistent between all automata. For instance,
if in a plant you can initially only push a button, and then release it, but if in a requirement
automaton you must first release it before it can be pushed, you are likely to get an empty
Supervisor.

* Make sure your requirements don’t restrict the system too much. Be especially careful with
blocking uncontrollable events in requirement automata.

For every uncontrollable event in the alphabet of a requirement automaton, make sure that the



requirement does not block the uncontrollable event. You can look at the plants, to see when the
uncontrollable event is possible. Then you may ask yourself, for each location of the
requirement, in which locations of the plant you can be at the same time. For such plant
locations, you should check whether the uncontrollable event is possible. It should then also be
possible in the requirement. There are two ways to solve the blocking of an uncontrollable
event by a requirement:

o The first solution is to correctly model the relations between the plants. For further details,
see the section on modeling plant relations.

o The second solution is to add self loops in the requirement to allow the uncontrollable event
that was previously disabled by the requirement.

The first solution is recommended, but it does not always apply. If it is not possible to use the
first solution, or if you already applied the first solution and still have the problem, you could
use the second solution. However, never blindly add self loops. Always check that this gives you
the desired behavior!

* Try to synthesize a supervisor with a subset of the requirements, to find out which requirement
(or combination of requirements!) is causing the lack of behavior.

Supervisor synthesis performance

There are several ways to altogether avoid performance and out-of-memory issues when applying
supervisor synthesis:

» Use the data-based synthesis tool rather than the event-based synthesis tool, as the former has
much better performance.

* Rather than synthesizing a single monolithic supervisor, employ non-monolithic synthesis to
make use of the inherent structure of your system.

However, if you still suffer such issues, consider the following to resolve them:

* See the page of the Eclipse ESCET general toolkit documentation on resolving performance and
memory problems. In particular, make sure to give Java more memory. This should be the first
thing you check.

 If possible, use requirements that are pure restrictions, as they only make the supervisor
smaller. If you introduce memory (e.g. counters), or other forms of sequencing (e.g. to specify
the order of controllable events), that usually increases the size of the supervisor. If possible,
use requirements with only one location, or even better, use requirement invariants. For more
information, see the State (exclusion) invariants, State/event exclusion invariants and Invariant
kinds sections of the CIF language tutorial.

* Try to separate your requirements as much as possible, to keep them simple. Also, leave out any
events from a requirement automaton that are not relevant to that specific requirement.

* You can try to restrict more of the system, by adding more requirements, to get a smaller


https://eclipse.dev/escet/v6.0-RC1/performance/index.html
https://eclipse.dev/escet/v6.0-RC1/performance/index.html

supervisor (with less behavior).

* Avoid adding plants that you don’t at all use in the requirements. For instance, don’t add a
button plant automaton if you don’t use the button.

 Try to avoid duplicate requirements that enforce the same behavior in different ways.

* Check out the performance section of the data-based synthesis tool documentation.

Non-monolithic supervisor synthesis

A known concern for supervisory controller synthesis is its scalability. While a supervisor may be
synthesized for smaller systems in seconds, for larger and more complex systems this may take
considerably more time. Employing the proper techniques for the given situation is essential to
mitigate this concern.

Often, rather than synthesizing a single monolithic supervisor, multiple supervisors should be
synthesized for different parts of the system, making use of the inherent structure of the system
itself. Combining this with abstraction, higher-level supervisors can still be synthesized on top of
lower-level supervisors, scaling to very large systems.

Still, multiple syntheses will need to be performed. If you encounter scalability issues for some of
them, divide the system further, or resolve the performance problems in another way.

1.4.3. Synthesis-based engineering in practice example

CIF supports the entire development process for synthesis-based engineering of supervisory
controllers. The steps involved are described in the section on synthesis-based engineering in
practice. However, here we focus on specification, supervisory controller synthesis, simulation and
code generation.

We consider how a controller can be developed for the synthesis-based engineering example. This
example is one of the many CIF examples. See the CIF examples section for how to import them into
your Eclipse ESCET IDE, to experiment with them yourself. After importing the examples project
into your IDE, you can find this example in the project’s synthesis/fifo folder.

Plant specification

First, we’ll specify the plants (file fifo.plants.cif). Consider again the following figure that
visualizes the example system:



(-

enter start

OP1 ﬁneﬂ
—
< INOUT =—» DISP CHK

exit /
do2 OP2 done2 xv
finished

DONE -
leave

/ \

Events

Each of the arrows indicates a movement of products. We can model each arrow as a controllable
event that the supervisor can control. The checker (CHK) may indicate that a product was processed
successfully or that it failed, which we can model as uncontrollable events. This leads to the
following event declarations:

controllable c_enter;
controllable ProductId c_start;
controllable ProductId c_dol;
controllable ProductId c_do2;
controllable ProductId c_donel;
controllable ProductId c_done2;
uncontrollable u_success;
uncontrollable u_failure;
controllable ProductId c¢_redo;
controllable ProductId c_leave;
controllable ProductId c_finished;
controllable c_exit;

Product identifiers

To be able to express the example’s FIFO requirement, we must keep track of product identifiers
(ids). A product may enter the system, after which it gets its id. As products move through the
system, their id is passed along. Hence, most of the events are channels that communicate a
ProductId. This is a custom type, defined as follows:

const int MAX_NR_OF PRODS = 5;
type ProductId = int[@ .. MAX_NR_OF_PRODS - 1];

CIF can only perform synthesis on specifications where types have a finite domain. We therefore
define a maximum number of products (MAX_NR_OF_PRODS) that may be in the system. Product ids are
then integer numbers in the range [0 .. MAX_NR_OF_PRODS - 1], with both bounds being inclusive.



This allows each product in the system to have a unique id.

The INOUT place

Each of the system’s places that can holds a product is modeled as a plant automaton.

First we model the INOUT place:

plant INOUT:
disc ProductId nextId = 0;
disc ProductId curld = 0;
disc ProductId lastExitId = MAX_NR_OF PRODS - 1;
disc int[@..MAX_NR_OF_PRODS] cnt = 0;

location Idle:
initial;
marked;
edge c_enter when cnt < MAX_NR_OF_PRODS do curld := nextId, nextId := (nextId + 1)
mod MAX_NR_OF_PRODS, cnt := cnt + 1 goto NewProduct;
edge c_finished? do curld := ? goto FinishedProduct;

location NewProduct:
edge c_start!curld do curld := @ goto Idle;

location FinishedProduct:
edge c_exit do lastExitId := curld, curld := @, cnt := cnt - 1 goto Idle;
end

The automaton has several variables:

» Variable nextId keeps track of the product id to use for the next product that enters the system.
The first product to enter the system gets id 0.

* Variable curId represents the product id of the product that is currently located at the INOUT
place. However, its value is irrelevant when there is no product at the INOUT place.

» Variable lastExitId keeps track of the last product that exited the system. Given that products
must enter and exit in FIFO order, and that the first product to enter gets id 0, lastExitId is
initialized to the largest possible product id.

* Variable cnt counts the number of products currently in the system. As initially there are no
products in the system, it is initialized to 0. The count is used to ensure MAX_NR_OF_PRODS can be
honored.

The automaton also has several locations. Initially the INOUT place is Idle, as it has no product.

A product may only enter (by event c_enter) if the maximum number of products is not yet
exceeded (cnt < MAX_NR_OF_PRODS). The product then gets assigned the next product id (curld :=
nextId), it being a newly entered product currently located at the INOUT place. As the next product
id has then been used, it will be incremented by one to ensure the next product again gets a unique
product id (nextId := (nextId + 1)). Given that the ProductId type only allows a finite number of



ids, we loop around to avoid overflow (mod MAX_NR_OF_PRODS). We also update the number of
products in the system (cnt := cnt + 1). The automaton then proceeds to its NewProduct location
(goto NewProduct).

In the NewProduct location, processing of a product may start (event c_start) by sending it (c_start!)
to the dispatcher (DISP). The product id is sent along (!curId) with this movement. After moving the
product to the dispatcher, the INOUT place no longer holds a product (goto Idle). The product id is
reset to zero (curId := 0). This is optional, but keeps the state space smaller, leading to more
efficient synthesis.

While Idle the INOUT place may receive a finished product (c_finished?) from the DONE place. The
product id of the currently present product is then updated to that of the received product (curld :=
7). The automaton then proceeds to the FinishedProduct location.

There the product may exit (event c_exit) the system. It then becomes the last product to have
exited the system (lastExitId := curld). There is then no longer a product at the INOUT place.
Again the product id is reset to zero (curld := 0) to keep the state space smaller for efficient
synthesis. As a product has left the system, the counter is also updated (cnt := cnt - 1).

The Idle location is also a marked location. This specifies that the INOUT place must always be able
to become idle again. Through similar markings in the other places also the system as a whole must
always be able to become idle again.

The other places

For brevity, we’ll not explain the remaining places in as much detail as the INOUT place. We’ll
discuss each automaton for each place briefly:

» The dispatcher (DISP) receives products (c_start?) from the INOUT place. It forwards them to
either the first (OP1) or second (OP2) operator, with c¢_do1!curId or c_do2!curld, respectively.

* The operators (OP1 and OP2) simply receive a product from the dispatcher (DISP) and forward
it to the checker (CHK), after some processing.

* The checker (CHK) receives a product from one of the operators (c_done1?, c_done2?). It then
determines whether the product was successfully processed (u_success) or processing has failed
(u_failed). It forwards successfully processed products to the DONE place by c_leave, while
failed products are sent back to the dispatcher (DISP) by c_redo.

* The DONE place simplify forwards products from the checker (CHK) to the INOUT place.

The FIFO requirement

With the plants specified, we specify the requirement (file fifo.plants_and_requirements.cif). We
specify it in a separate file, to allow using the plant model for both synthesis and simulation, as
described later in this section.

First, we import into this file the entire plant specification:



import "fifo.plants.cif";

The requirement was given in natural language as:
* Products must enter and exit the system in FIFO order.

We can easily model it as follows, using a requirement invariant:

requirement FIFO: INOUT.FinishedProduct => INOUT.curId = ((INOUT.lastExitId + 1) mod
MAX_NR_OF _PRODS);

If the INOUT place has a finished product (is in its FinishedProduct location), then a product is about
to exit the system. We know the product id of the last product that exited (INOUT.lastExitId) and the
product id of the product currently situated at the INOUT place (INOUT.curId). Products that enter
the system get an id that is one higher than the previous product that entered (modulo the
maximum number of products). The FIFO property can thus be ensured by requiring that when a
product exits, it also has an id one higher than the last product that exited (again modulo the
maximum number of products). From this, requirement FIF0 follows directly.

Performing synthesis

We can automatically compute a supervisory controller by applying supervisory controller
synthesis. For this, we’ll use the CIF data-based synthesis tool.

To be able to perform synthesis with the push of a button, a script is provided (file
do1_synthesize.tooldef):

from "lib:cif" import *;
mkdir("generated", force=true);

cifdatasynth("fifo.plants_and_requirements.cif --forward-reach=true -mdebug -o
generated/fifo.synthesized.cif");

It first imports the CIF tools. Then it ensures that directory named generated exists. It is thus created
if it does not yet exist. Lastly, it invokes the CIF data-based synthesis tool on the file that contains
the plants and requirements. It configures some options. Forward reachability is enabled for
simpler resulting control conditions. It also enables debug output to be printed to the console,
allowing to see what synthesis has done. Finally, it specifies that the synthesis result is to be saved
to the fifo.synthesized.cif file in the generated directory.

To execute the script, right click it an choose Execute ToolDef or select the file and press F10.



Simulation model

To validate the system controlled by the synthesized supervisor, it can be useful to simulate it. We
therefore specify a simulation model (file fifo.simulation.cif).

This model first imports the synthesized supervisor:

import "generated/fifo.synthesized.cif";

It then specifies an SVG image to be used for visualization of the system:

svgfile "fifo.svg";

The bulk of the specification consists of CIF/SVG output mappings that map the state of the plant
model to properties of elements of the SVG image. Some of them ensure that text labels have the
correct text, others ensure that boxes have the correct fill color, etc. Here are some examples:

svgout id "max-nr-of-prods" text value <string>MAX_NR_OF_PRODS;
svgout id "inout-cur-txt"  text value if INOUT.Idle: "-" else
<string>INOUT.curId end;

svgout id "inout" attr "fill" value if INOUT.Idle: COLOR_IDLE else
COLOR_BUSY end;

svgout id "chk-rs1t" attr "visibility" value if CHK.Idle: "hidden" else
"visible" end;

svgout id "chk-rs1t" attr "fill" value switch CHK:

case Idle: COLOR_IDLE

case Busy: COLOR_BUSY

case Success: COLOR_SUCCESS

case Failure: COLOR_FAILURE
end;

By using CIF/SVG input mappings, certain elements of the SVG image can be clicked to trigger
events in the model. Here are some examples:

svgin id "enter" event c_enter;
svgin id "start" event c_start;
svgin id "finished" event c_finished;
svgin id "exit" event c_exit;

The following figure shows a potential visualization of the state of the system during a simulation:



Max nr. of products: 5
Last entered product id: 1
Last exited product id: n/a

((“

enter

done1
start \ 0

INOUT —» DISP CHK

=7
S 1 \ /d)

finished

K

DONE =&

leave

A place is gray if there is no product. The smaller box next to it is then also gray and indicates -, for
no product. An occupied place is blue, with its smaller indicating the product id of the product that
is present.

For the checker (CHK) a second small box is present. It is hidden if there is no product at the
checker. If a product is present for which a check has not yet been done, then the box is blue and
has a question mark. If the check has completed and the product was processed successfully, then
the box is green and has a tick mark. If processing the product failed, then the box is red with a
cross mark.

At the top left some additional information is provided. It indicates the maximum number of
products that may be in the system, as configured via MAX_NR_OF_PRODS. It further indicates the
product id of the last product that entered the system, or n/a if no product has entered the system
yet. Finally, it indicates the product id of the last product that existed, as indicated by
INOUT.1lastExitId, or n/a if no product has exited thus far.

It can not be determined from the plant whether any products have entered or exited thus far, nor
what is the product id of the last product that entered. To ensure this information is available to be
used in the CIF/SVG output mappings, a monitor automaton is added to the simulation model that
keep tracks of this information:

automaton monitors:
disc bool anyInput = false;
disc bool anyQutput = false;
disc ProductId lastEnterId = 0;

location:
initial;
edge c_enter do anylnput :
edge c_exit do anyOutput :
end

true, lastEnterId := INOUT.nextId;
true;

As products enter (event c_enter) or exit (event c_exit) the variables are updated as needed. The



variables are used in the CIF/SVG output mappings.

The labeled arrows in the figure can be clicked to trigger their corresponding events. For example,
clicking the arrow labeled with enter triggers event c_enter. When an arrow is clicked and the
corresponding event is not enabled, a warning will be printed to the console.

Simulating the supervised system
Similar to having a script to perform synthesis, a script is present to perform simulation (file
do2_simulate.tooldef):

from "lib:cif" import *;

cifsim("fifo.simulation.cif -i svg --frame-rate=30");
This script also imports the CIF tools. It then starts the CIF simulator. It configures some of the
simulator’s options, among others to indicate the simulation model to simulate.

Start the script as before. Simulation will start and show the visualization.

Manually modeled supervisor

The example project also contains two other scripts. They can be used to check whether a manually
modeled supervisor (file fifo.manually_modeled_supervisor.cif) has the same behavior as the
synthesized supervisor. The first script (file do3_chk_cif.tooldef) performs this check using various
CIF tools only. The second script (file do3_chk_mcr12.tooldef) performs the same check using mCRL2.

Normally, one would not manually model the supervisor, and thus also not perform such checks.
However, for this example we include them, as they may prove illustrative.

Code generation

Finally, from the synthesized supervisor an implementation of the controller may be automatically
generated. CIF has tools to generate code for several programming languages.

1.5. Challenges in applying synthesis-based
engineering

A synthesis-based engineering approach has many advantages over a more traditional engineering
approach. However, there can be challenges when embedding such a new approach into industrial
practice. It is essential to be aware of them, and manage them explicitly.

Most of the challenges that apply to a synthesis-based engineering approach also apply to other
model-based engineering approaches, including verification-based engineering.

The following challenges are discussed:

* Change in way-of-working



* Tool support

1.5.1. Change in way-of-working

The use of model-based engineering, the modeling of behavioral specifications and control
requirements, and the use of formal techniques such as supervisory controller synthesis, requires a
certain mindset, knowledge and skills. It is important that personnel with the appropriate
knowledge and expertise is present in a company. Having a team of properly trained and
experienced experts that can assist with and steer the introduction of new techniques is essential. If
a company does not have such experts, they could hire them. However, training and retraining for
(part of) the existing personnel is often also required.

Furthermore, model-based engineering partly also requires a different way of working compared
to traditional engineering approaches. It is important to understand the effects on the company’s
development process, as well as its culture. The various pros and cons must be evaluated, and any
impediments must be identified and addressed.

A transition like this will not happen in a day. Sharing experiences with other parties that have
gone through a similar transition and/or are going through one can be of great benefit. Another
way to reduce the risks is contracting an external party to help guide the process.

Furthermore, risks can be reduced by step by step introducing the changes to the development
process, introducing more and more elements of model-based, verification-based and synthesis-
based engineering. This way models become more and more leading, throughout the development
process. For instance, you could follow these steps:

1. Start modeling (the requirements): Increase the quality of requirements by specifying them
formally in a model-based way, during early development phases. This can already be
combined with for instance simulation, to produce unambiguous specifications, leading to less
mistakes and reduced rework. In this first step, the resulting requirements can still be put in a
document and implemented manually.

2. Models as single source of truth: Formally but manually specify the controller model in a
model-based way, based on the formal requirements. From the model, automatically generate
the controller code. This is a step towards making the model the single source of truth.

3. Embrace formal methods: In this step, employ more formal methods to go beyond simulation
and testing. Use formal methods that have more guarantees on completeness. For instance, use
formal verification to guarantee that all specified requirements are satisfied in every
conceivable situation. At the end of this step, you could fully adopt model-based and
verification-based engineering.

4. Adopt synthesis-based engineering: Use supervisory controller synthesis, and fully adopt
synthesis-based engineering.

1.5.2. Tool support

Synthesis-based engineering requires tool support to model plants and requirements, to synthesize
supervisors, perform simulation, generate code, etc. Given that automation and computer-aided
design are core principles, this is simply not feasible without appropriate tool support. Companies
should consider various aspects regarding the tools they use, such as the following:



Tools ideally support as much of the development process of supervisory controllers as possible.
» Consider how to integrate the synthesized supervisors into the system.
* Consider how active the community around the tool is.
* Consider whether commercial support is available.
The selected tools should also be used in the right way. For instance, naively applying synthesis and
trying to obtain a single monolithic supervisor for larger and more complex systems will likely not

scale very well. Employing the proper techniques for the given situation is essential to mitigate
such concerns.



Chapter 2. Language tutorial

This tutorial introduces the CIF language. It explains the general idea behind the concepts of the
language, and shows how to use them, all by means of examples. The tutorial is focused on giving a
short introduction to CIF, and does not cover all details. It is recommended reading for all CIF users.

2.1. Introduction

CIF is primarily used to create models of physical systems and their controllers, describing their
behavior. However, CIF is a general-purpose modeling language, and can be used to model
practically anything, ranging from physical real-world systems to abstract mathematical entities.

CIF supports discrete event models, that are mostly concerned with what happens, and in which
order. CIF also supports timed systems, where timing plays an explicit role, and hybrid systems,
which combine the discrete events with timing. This makes CIF suitable for modeling of all kinds of
systems.

The CIF tooling puts a particular focus on supporting the entire development process of controllers.
However, just as the CIF language, the CIF tooling can be applied much more generally. The tooling
allows among others specification, supervisory controller synthesis, simulation-based validation
and visualization, verification, real-time testing, and code generation.

CIF originally stood for Compositional Interchange Format for hybrid systems. As the language has
since evolved beyond its original purpose, the name 'CIF' is nowadays only used in its abbreviated
form.

2.2. Lessons

Several lessons are available, grouped into the following categories:

* Basics

* Data

» Types and values

» Scalable solutions and reuse (1/2)
* Time

* Channel communication

* Functions

» Scalable solutions and reuse (2/2)
 Stochastics

» SVG visualization and interaction

e Text



* Language extensions
The lessons introduce new concepts, one by one, and are meant to be read in the given order.
Basics

Automata

Explains automata, locations, events, edges, transitions, and more.

Synchronizing events

Explains event synchronization, enabledness, traces, and state spaces.

Non-determinism

Explains multiple causes of non-determinism.

Alphabet

Explains alphabets for both individual automata and entire specifications.

Event declaration placement

Explains the placement of event declarations.

Shorter notations

Explains several shorter notations, including self loops, declaring multiple events with a single
declaration, multiple events on an edge, and nameless locations.

Data

Discrete variables

Explains discrete variables, guards, and updates.

Discrete variable value changes

Explains how and when discrete variables can change value.

Location/variable duality (1/2)

Explains the duality between locations and variables using a model of a counter.

Location/variable duality (2/2)

Explains the duality between locations and variables using a model of a lamp.

Global read, local write

Explains the concepts of global read and local write.

Monitoring

Explains monitoring, self loops, and monitor automata.

Old and new values in assignments

Explains old and new values of variables in assignments, multiple assignments, and the order of
assignments.



The tau event

Explains the tau event.

Initial values of discrete variables

Explains initialization of discrete variables, including the use of default values and multiple
potential initial values.

Initialization predicates

Explains initialization in general, and initialization predicates in particular.

Using locations as variables

Explains the use of locations as variables.

State (exclusion) invariants

Explains state (exclusion) invariants.

State/event exclusion invariants

Explains state/event exclusion invariants.
Types and values

Types, values, and expressions

Explains the concepts of types, values, and expressions, as an introduction for the other lessons
in this category.

Values overview

Provides an overview of the available values, and divides them into categories.

Integers

Explains integer types, values, and commonly used expressions.

Ranged integers

Explains ranged integers.

Reals

Explains real types, values, and commonly used expressions.

Booleans

Explains boolean types, values, and commonly used expressions.

Strings

Explains string types, values, and commonly used expressions.

Enumerations

Explains enumeration types, values, and commonly used expressions.

Tuples

Explains tuple types, values, and commonly used expressions.



Lists

Explains list types, values, and commonly used expressions.

Bounded lists and arrays

Explains bounded lists, arrays, and their relations with regular lists.

Sets

Explains set types, values, and commonly used expressions.

Dictionaries

Explains dictionary types, values, and commonly used expressions.

Combining values

Explains how to combine values of different types.

If and switch expressions

Explains if and switch expressions.
Scalable solutions and reuse (1/2)

Constants

Explains the use of constants.

Algebraic variables

Explains the use of algebraic variables.

Algebraic variables and equations

Explains the use of equations to specify values of algebraic variables.

Type declarations

Explains the use of type declarations.
Time

Timing

Introduces the concept of timing.

Continuous variables

Explains the use of continuous variables.

Continuous variables and equations

Explains the use of equations to specify values of continuous variables.

Equations

Show the use of equations for both continuous and algebraic variables, by means of an example
of a non-linear system.


https://en.wikipedia.org/wiki/Nonlinear_system

Variables overview

Provides an overview of the different kinds of variables in CIF, and their main differences.

Urgency

Explains the concept of urgency, as well as the different forms of urgency.

Deadlock and livelock

Explains the concepts of deadlock and livelock.
Channel communication

Channels

Explains point-to-point channels and data communication.

Dataless channels

Explains void channels that do not communicate any data.

Combining channel communication with event synchronization

Explains how channel communication can be combined with event synchronization, further
restricting the communication.

Functions

Functions

Introduces functions, and explains the different kind of functions.

Internal user-defined functions

Explains internal user-defined functions.

Function statements

Explains the different statements that can be used in internal user-defined functions.

Functions as values

Explains using functions as values, allowing functions to be passed around.
Scalable solutions and reuse (2/2)

Automaton definition/instantiation

Explains using automaton definition and instantiation for reuse.

Parametrized automaton definitions

Explains parametrized automaton definitions.

Automaton definition parameters

Explains the different kinds of parameters of automaton definitions.

Groups

Explains hierarchical structuring using groups.



Group definitions

Explains groups definitions and parametrized group definitions.

Imports

Explains splitting CIF specifications over multiple files using imports.

Imports and libraries

Explains how to create libraries that can be used by multiple CIF specifications using imports, as
well as how to use imports to include CIF specifications from other directories.

Imports and groups

Explains how imports and groups interact.

Namespaces

Explains namespaces, and how they can be used together with imports.

Input variables

Explains input variables, how they can be used for coupling with other models and systems, and
their relation to imports.

Stochastics

Stochastics

Introduction to stochastic distributions, which allow for sampling, making it possible to produce
random values.

Discrete, continuous, and constant distributions

Explains the different categories of stochastic distributions: discrete, continuous, and constant
distributions.

Pseudo-randomness

Explains how computers implement stochastics using pseudo-random number generators, and
how this affects the use of stochastics in CIF.

SVG visualization and interaction

SVG visualization

Introduction to SVG visualization, which allows to connect an image to a CIF model and update
the image based on the state of the model.

First example

A first simple example of SVG visualization.

Inkscape

Explains how to use the Inkscape drawing program to edit SVG images.

Sun/moon example

An example of using groups of SVG objects, as well as controlling the visibility of objects based



on the current locations of automata.

Walk example

An example of of using groups of SVG objects, positioning them, and changing their position
using an output mapping, as well as using the scale standard library function, text formatting,
multiple values in an output mapping, and multiple format specifiers in a format pattern.

Rate example

An example of using literal values in output mappings, as well using simple solution to solve
visualization problems.

Workstation example

An example of fixed-value and clock-based object widths, changing the fill color of objects,
updating multiple attributes of an SVG object, specifying colors in SVG, and improving scalability
by reusing mappings.

Tank example

An example of using the scale standard library function, as well as how inverting the y-axis can
reduce the number of output mappings.

Lamps example

An example of hierarchical scalability of SVG images by reusing mappings, as well as copying
elements and moving them to the desired position.

Buffers/products example

Another example of hierarchical scalability of SVG images by reusing mappings, as well as
copying (copied) elements and moving them to the desired position.

SVG interaction

Explains how to extend a model to couple it to an image for interaction via a visualization.
Text

Print output

Introduces print output by means of print declarations, which allows to print custom text from
the model at runtime, either to the console or to a file.

Print output examples

Explains print output by means of examples.

Text formatting

Explains text formatting by means of examples.
Language extensions

Supervisory controller synthesis

Explains how to extend a model to make it suitable for supervisory controller synthesis.



Annotations

Explains how to annotate elements of the specification with extra information.

2.3. Basics

2.3.1. Automata

CIF models consist of components. Each of the components represents the behavior of a part of the
system. Components can be modeled as automata, which form the basis of CIF. The following CIF
specification, or CIF model, shows a simple automaton:

automaton lamp:
event turn_on, turn_off;

location on:
initial;
edge turn_off goto off;

location off:
edge turn_on goto on;
end

The automaton is named lamp, and not surprisingly represents the (discrete) behavior of a lamp.

Automaton lamp declares two events, named turn_on and turn_off. Events model things that can
happen in a system. They represent changes. For instance, the turn_on event indicates that the lamp
is being turned on. It represents the change from the lamp being off to the lamp being on. The event
declaration in the lamp automaton declares two events. The event declaration only indicates that
these events exist, it does not yet indicate when they can happen, and what the result of them
happening is.

All automata have one or more locations, which represent the mutually exclusive states of the
automaton. The lamp automaton has two locations, named on and off. Automata have an active or
current location. That is, for every automaton one of its location is the active location, and the
automaton is said to be in that location. For instance, the lamp automaton is either in its on location,
or in its of f location.

Initially, the lamp is on, as indicated by the initial keyword in the on location. That is, the on
location is the initial location of the 1amp automaton. The initial location is the active location of the
automaton, at the start of the system.



In each location, an automaton can have different behavior, specified using edges. An edge
indicates how an automaton can change its state, by going from one location to another. Edges can
be associated with events, that indicate what happened, and thus what caused the state change. In
each location, only the behavior specified by its edges is possible, for that automaton. No other
behavior is possible.

The lamp automaton has an edge with the turn_off event, in its on location, going to the off location.
Whenever the lamp is on, the lamp automaton is in its on location. Whenever the lamp is turned off,
the turn_off event happens. The edge with that event indicates what the result of that event is, for
the on location. In this case the result is that the lamp will then be off, which is why the edge goes to
the off location.

The lamp automaton can go from one location to another, as described by its edges. This is referred
to as 'performing a transition', 'taking a transition’, or 'taking an edge'. The lamp automaton can keep
performing transitions. The lamp can be turned on, off, on again, off again, etc. This can go on
forever.

2.3.2. Synchronizing events

The power of events is that they synchronize. To illustrate this, consider the following CIF
specification:

automaton producer:
event produce, provide;

location producing:
initial;
edge produce goto idle;

location idle:
edge provide goto producing;
end

The automaton represents a producer that produces products, to be consumed by a consumer. The
producer automaton starts in its producing location, in which it produces a product. Once the
product has been produced, indicated by the produce event, the automaton will be in its idle
location, where it waits until it can provide the produced product to the consumer. Once it has
provided the product to the consumer, it will once again be producing another product. Consider
also the following continuation of the above specification:

automaton consumer:
event consume;

location idle:



initial;
edge producer.provide goto consuming;

location consuming:
edge consume goto idle;
end

This second automaton represents a consumer that consumes products. The consumer is initially
idle, waiting for a product from the producer. Once the producer has provided a product, the
consumer will be consuming. Once it has consumed the product, as indicated by the occurrence of
the consume event, it will become idle again.

The specification has three events, the produce and provide events declared in the producer
automaton, and the consume event declared in the consumer automaton. The consumer automaton, in
its idle location, has an edge that refers to the provide event declared in the producer automaton. As
such, that edge and the edge in the idle location of the producer automaton, refer to the same event.

Synchronization

Events that are used in multiple automata, must synchronize. That is, if one of those automata
performs a transition for that event, the other automata must also participate by performing a
transition for that same event. If one of the automata that uses the event can not perform a
transition in its current location, none of the automata can perform a transition for that event.

Now, lets take a closer look at the behavior of the producer/consumer example. Initially, the
producer automaton is in its producing location, and the consumer automaton is in its idle location.
Since the producer is the only automaton that uses the produce event, and there is an (outgoing) edge
in its current location for that produce event, the producer can go to its idle location by means of
that event.

Both the producer and consumer use the provide event. The producer has no edge with that event in its
producing location, while the consumer does have an edge for that event in its idle location. Since
events must synchronize, and the producer can not participate, the event can not occur at this time.
This is what we expect, as the producer has not yet produced a product, and can thus not yet provide
it to the consumer. The consumer will have to remain idle until the producer has produced a product
and is ready to provide it to the consumer.

The producer blocks the provide event in this case, and is said to disable the event. The event is not
blocked by the consumer, and is thus said to be enabled in the consumer automaton. In the entire
specification, the event is disabled as well, as it is disabled by at least one of the automata of the
specification, and all automata must enable the event for it to become enabled in the specification.

The only behavior that is possible, is for the producer to produce a product, and go to its idle
location. The consumer does not participate and remains in its idle location. Both automata are then
in their idle location, and both have an edge that enables the provide event. As such, the provide
event is enabled in the specification. As this is the only possible behavior, a transition for the
provide event is performed. This results in the producer going back to its producing location, while at



the same time the consumer goes to its consuming location.

In its producing location, the producer can produce a product. Furthermore, in its consuming location,
the consumer can consume a product. Two transitions are possible, and CIF does not define which one
will be performed. That is, either one can be performed. No assumptions should be made either
way. In other words, both transitions represent valid behavior, as described by this specification.
Since only one transition can be taken at a time, there are two possibilities. Either the producer
starts to produce the product first, and the consumer starts to consume after that, or the other way
around.

Traces and state spaces

Once both transitions have been taken, we are essentially in the same situation as we were after the
producer produced a product the first time, as both automata will be in their idle locations again.
The behavior of the specification then continues to repeat forever. However, for each repetition
different choices in the order of production and consumption can be made.

During a single execution or simulation, choices are made each time that multiple transitions are
possible. The sequence of transitions that are taken is called a trace. Examples of traces for the
producer/consumer example are:

e produce — provide — produce — consume — provide — produce — consume - ...

* produce — provide — produce — consume — provide — consume — produce - ...

* produce — provide — consume — produce — provide — produce — consume - ...

* produce — provide — consume — produce — provide — consume — produce — ...

The traces end with ... to indicate that they are partial traces, that go beyond the part of the trace
that is shown. These four traces however, cover all the possibilities for the first seven transitions.

All possible traces together form the state space, which represents all the possible behavior of a
system. For the producer/consumer example, the state space is:

ijc ijc
2 [a) & G
& 0, RS 0,
& 2, & 2,
Q (] Q ®
produce provide provide provide
— p/i ifi > p/c ifi ——— p/c ifi ———— pfc —---
C\ e C\ 2
KO S K5 S
<% <%
25 & 2 &
p/i p/i

Here the circles represent the states of the specification, which are a combination of the states of
the two automata. The labels of the circles indicate the state, as a combination of the first letters of
the locations of the automata. The initial state is labeled p/i, as initially automaton producer is in its
producing (p) location, and the consumer is in its idle (i) location. The arrows indicate the transitions,
and are labeled with events. The state space clearly shows the choices, as multiple outgoing arrows
for a single state. It also makes it clear that as we move to the right, and make choices, we can make
different choices for different products. Since the behavior keeps repeating itself, the state space
ends with ... to indicate that only a part of the state space is shown.



However, we can also show the entire behavior of the specification. Essential here is that the state
space shown above has duplicate states. That is, several states have the same label, and allow for
the same future behavior. By reusing states, a finite representation of the state space can be made,
which shows the entire possible infinite behavior of the producer/consumer specification:

produce
— p/i ———» /i

consume consume

p/c —— i/c
produce

Concluding remarks

By using multiple automata, the producer and consumer were modeled independently, allowing for
separation of concerns. This is an important concept, especially when modeling larger systems. In
general, the large system is decomposed into parts, usually corresponding to physical entities. Each
of the parts of the system can then be modeled in isolation, with little regard for the other parts.

By using synchronizing events, the different automata that model different parts of a system, can
interact. This allows for modeling of the connection between the different parts of the system,
ensuring that together they represent the behavior of the entire system.

2.3.3. Non-determinism

Depending on the context in which it is used, non-determinism can mean different things. One
definition is having multiple possible traces through the state space of a system. Another definition
is having multiple possible transitions for a certain event, for a certain state. Different communities
also use different definitions, and some communities only use one of the definitions, and use a
different name to refer to the other concept.

Non-determinism between events

One cause of non-determinism is that multiple events are enabled, leading to multiple possible
transitions. In other words, there are multiple possible traces through the state space. During the
lesson on synchronizing events, we already encountered this form of non-determinism, as
transitions for the produce and consume events could be performed in arbitrary order.

Non-determinism for single event

Another cause of non-determinism is the presence of multiple outgoing edges of a single location
for the same event. This can lead to multiple possible transitions for a that event, for a single state.
For instance, consider the following CIF specification:

automaton coin:
event toss, land, pick_up;

location hand:



initial;
edge toss goto air;

location air:
edge land goto ground;

location ground:
edge pick_up goto hand;
end

automaton outcome:
location unknown:
initial;
edge coin.land goto heads; // First way to land.
edge coin.land goto tails; // Second way to land.

location heads:
edge coin.pick_up goto unknown;

location tails:
edge coin.pick_up goto unknown;
end

The coin automaton represents a single coin. Initially, it is in the hand of a person. That person can
toss the coin up into the air, eventually causing it to fall and 1and on the ground. It can be picked up
(event pick_up), causing it to once again be in the hand of a person.

The outcome automaton registers the outcome of the coin toss. Initially, the outcome is unknown.
Whenever the coin is tossed, it lands (event land from automaton coin) on the ground with either
the heads or tails side up. The unknown location of the outcome automaton has two edges for the same
event. This leads to two possible transitions, one to the heads location, and one to the tails location.
This is a non-deterministic choice, as the model does not specify which transition is chosen, or even
which choice is more likely.

In both the heads and tails locations, the coin can be picked up again, making the outcome unknown.
The coin can be tossed again and again, repeating the behavior forever. The following figure shows
the state space of this specification:

p"tﬂk-up g/h
—> h/u ﬁr— a/u
fen
Pkﬂ;uﬂ d g/t

The states are labeled with the first letters of the current locations of the two automata.


https://en.wikipedia.org/wiki/Coin_toss

2.3.4. Alphabet

The lesson on synchronizing events described how events that are used in multiple automata
exhibit synchronizing behavior. That is, if the event is used in multiple automata, they must all
enable that event in order for a transition to be possible. If one of them can not perform the event,
the event is disabled, and none of the automata can perform a transition for that event.

Whether an automaton participates in the synchronization for a certain event, is determined by its
alphabet. The alphabet of an automaton is the collection of events over which it synchronizes.

Default and implicit alphabets

By default, the alphabet of an automaton implicitly contains all the events that occur on the edges
of the automaton. For instance, consider the following CIF specification (the producer/consumer
example from the lesson on synchronizing events):

automaton producer:
event produce, provide;

location producing:
initial;
edge produce goto idle;

location idle:
edge provide goto producing;
end

automaton consumer:
event consume;

location idle:
initial;
edge producer.provide goto consuming;

location consuming:
edge consume goto idle;
end

The alphabet of the producer automaton contains the events produce and provide, as both occur on
edges of that automaton. The alphabet of the consumer automaton contains the events
producer.produce and consume.



Explicit alphabet

It is possible to explicitly specify the alphabet of an automaton, as follows:

event provide;

automaton producer:
event produce;

alphabet produce, provide; // Alphabet explicitly specified.

location producing:
initial;
edge produce goto idle;

location idle:
edge provide goto producing;
end

The alphabet keyword is followed by the events that comprise the alphabet of the automaton,
separated by commas. In this case, the alphabet contains the produce and provide events. Since this
explicitly specified alphabet is exactly the same as the default alphabet, it could just as easily be
omitted.

Non-default alphabet

The alphabet is allowed to be empty, which can be explicitly specified as follows:

alphabet; // Empty alphabet. Automaton doesn't synchronize over any events.

However, the alphabet of an automaton must at least contain the events that occur on the edges of
an automaton. That is, it must at least contain the default alphabet.

It may however also contain additional events. Since there are no edges for those additional events,
the automaton can never enable those events, and thus always disables them. If a single automaton
disables an event, and since it must always participate if it has that event in its alphabet, this means
that the event becomes globally disabled in the entire specification. Having such additional events
in the alphabet leads to a warning, to inform about the potential undesired effects of globally
disabling events in this manner.

Implicit vs explicit

It should be clear that for most automata, the implicit default alphabet suffices. There are however
reasons for explicitly specifying the default alphabet. For large automata, it can improve the
readability, as the explicit alphabet makes it easy to determine the alphabet of the automaton,



without having to look at all the edges.

The need to explicitly specifying a non-default alphabet rarely occurs. However, several tools
generate CIF specifications with explicit alphabets.

2.3.5. Event declaration placement

Consider the following CIF specification (the producer/consumer example from the lesson on
synchronizing events):

automaton producer:
event produce, provide;

location producing:
initial;
edge produce goto idle;

location idle:
edge provide goto producing;
end

automaton consumer:
event consume;

location idle:
initial;
edge producer.provide goto consuming;

location consuming:
edge consume goto idle;
end

The specification could also be specified as follows:

automaton producer:
event produce, provide, consume; // Declaration of event 'consume' moved.

location producing:
initial;
edge produce goto idle;

location idle:
edge provide goto producing;
end

automaton consumer:
location idle:
initial;
edge producer.provide goto consuming;



location consuming:
edge producer.consume goto idle; // Event 'consume' from 'producer’.
end

The consume event is now declared in the producer automaton rather than the consumer automaton,
but the locations and edges have not changed. This modified specification exhibits the same
behavior as the original.

It should be clear that while events can be declared in various places, it is best to declare them
where they belong. That is, the consume event is only used by the consumer automaton, and is thus
best declared in that automaton. Similarly, the produce event is only used by the producer
automaton.

The provide event however is used by both automata. In such cases the event is usually declared
where it is initiated. In the example above, the producer provides the product to the consumer, and
not the other way around. Therefore, the provide event is declared in the producer automaton,
rather than in the consumer automaton.

However, the modeler is free to choose the best place to declare the event. If no choice can be made
between the automata, the event can also be declared outside the automata, as follows:

event provide; // Event 'provide' now declared outside the automata.

automaton producer:
event produce;

location producing:
initial;
edge produce goto idle;

location idle:
edge provide goto producing;
end

automaton consumer:
event consume;

location idle:

initial;

edge provide goto consuming; // Can directly refer to 'provide' event.
location consuming:

edge consume goto idle;
end

This specification also has the same behavior. Only the placement of the event declarations has
changed.



The place where an event is declared is of no influence to the implicit (default) alphabets of the
automata. The implicit alphabet of an automaton is determined solely based on the events that
occur on the edges of that automaton.

2.3.6. Shorter notations

This lessons explains several short notations, that can be used for easier modeling, can reduce the
size of the specification, and make specifications easier to read. The following topics are discussed:

 Selfloop

* Declaring multiple events with a single declaration

Multiple events on an edge

¢ Nameless location

Self loop

A self loop is an edge that goes to the location from which it originated. Consider the following
example:

automaton a:
event e;

location x:
edge e goto x;
end

The edge in location x of automaton a goes to location x. The effect of the e event is that automaton a
remains in its x location. A self loop can be used to allow a certain event, essentially ignoring it for
that location.

The following short notation can be used for self loops:

automaton a:
event e;

location x:
edge e; // Goto omitted for self loop.
end

The goto part of the edge can be omitted for self loop. This can help make the model easier to read,
as the resulting location does not have to be checked against the source location of the edge, to see
whether they match.



Declaring multiple events with a single declaration

Several of the previous lessons already showed that multiple events can be declared using a single
event declaration:

event a, b, c¢; // Single declaration declares multiple events.

This is equivalent to using multiple event declarations that each declare a single event:

event a; // Multiple declarations each declare a single event.
event b;
event c;

Using a single declaration to declare multiple events can help reduce the length of a specification.

Multiple events on an edge

Consider the following CIF specification:

automaton a:
event e, f;

location loc:
edge e goto loc; // Two edges that only differ in the event.
edge f goto loc;
end

This can also be written more compactly, as follows:

automaton a:
event e, f;

location loc:
edge e, f goto loc; // Edge with two events.
end

An edge with two or more events means exactly the same as having individual edges for the
different events. That is, a choice is made between them. It does not specify that event f can only
happen after event e has already happened. Both automata thus have the exact same behavior.



Nameless location

Several of the examples above show automata with a single location. For such automata, the name
of the location is optional:

automaton a:
event e;

location:

edge e;
end

Since the location has no name, there is no way to refer to it in a goto, and thus only self loop edges
can be used. Leaving out the name prevents having to come up with a dummy name, which can
clutter the specification.

2.4. Data

2.4.1. Discrete variables

This lesson introduces discrete variables. Consider the following specification:

automaton counter:
event increment, decrement;

disc int count = 3;

location:
edge decrement when count > @ do count := count - 1;
edge increment when count < 5 do count := count + 1;

end

The counter automaton can be used to count certain things. The increment and decrement events are
used to change the count. The count itself is stored in a variable named count. CIF has several
different types of variables. Here, we use a discrete variable, as indicated by the disc keyword. The
variable has an int data type, meaning it can have integer numbers as its value. It is initialized to
value 3.

The automaton has two edges, one for the increment event, and one for the decrement event. The
edge for the decrement event has a guard that indicates under which circumstances the event can
take place. The condition is indicated using the when keyword. In this case, the guard ensures that
the count can only be decremented if it is currently positive. The guard of the edge for the increment
event indicates that the count can only be incremented as long as it is less than five. In general, a
guard must hold in the source location of the edge, for the edge to be enabled, and a transition to be
possible. If the guard is not specified, it defaults to true, which always holds and does not restrict
the edge in any way.



Both edges also have updates, indicated using the do keyword. Updates can be used to specify the
effect of the transition on variables. In this case, the updates assign a new value to the count
variable that is one less or one more than the current value. That is the value of the count variable
is decremented or incremented by one.

This specification represents a counter that can be repeatedly incremented and decremented by
one, and ensures that the value of variable count is always at least zero and at most five.

The state space of the counter automaton is as follows:

increment increment increment 'L increment increment
0 1 2 3 4 5
decrement decrement decrement decrement decrement

2.4.2. Discrete variable value changes

Discrete variables can only change value by explicitly assigning them a new value in the do part of
an edge. If an edge does not assign a value to a discrete variable, that variable keeps its current
value. Consider the following CIF specification:

automaton lamp:
event turn_on, turn_off;

disc int count = 0;

location off:
initial;
edge turn_on do count := count + 1 goto on;

location on:
edge turn_off goto off;
end

This is the same lamp automaton as used in the lesson on automata, but with a count variable added.
This variable is used to count the number of times that the lamp has been turned on. The edge for
the turn_on event increments the value of the variable by one, each time the lamp is turned on.

The edge for the turn_off event does not assign a value to a variable, so variable count keeps its
value when the lamp is turned off.

The state space of this specification is:

turn_on turn_off turn_on turn_off turn_on turn_off
on/3 off /3 — ..

—» off/0 on/1 off/1 on/2 off/2

The states are labeled with the name of the current location of automaton lamp and the current
value of variable count.



2.4.3. Location/variable duality (1/2)

The lesson that introduces discrete variables, uses an example of a counter. The actual count was
modeled using a variable:

automaton counter:
event increment, decrement;

disc int count = 3;

location:
edge decrement when count > @ do count := count - 1;
edge increment when count < 5 do count := count + 1;

end

It is also possible to use multiple locations instead of a variable:

automaton counter:
event increment, decrement;

location zero:
edge increment goto one;

location one:
edge decrement goto zero;
edge increment goto two;

location two:
edge decrement goto one;
edge increment goto three;

location three:
initial;

edge decrement goto two;
edge increment goto four;

location four:
edge decrement goto three;
edge increment goto five;

location five:
edge decrement goto four;
end

This alternate model has the same behavior, in that it models a counter that can be incremented an
decremented in steps of one, and the value is kept at least zero, and at most five. The variant with
the variable however, is shorter and more intuitive. It is also easier to change to the count < 5



guard to count < 100 than it is to add dozens of additional locations and edges. In this case, using a
variable is preferable to using multiple locations.

2.4.4. Location/variable duality (2/2)

The lesson that introduces automata, used an example of a lamp:

automaton lamp:
event turn_on, turn_off;

location on:

initial;

edge turn_off goto off;
location off:

edge turn_on goto on;
end

The automaton uses two locations to keep track of the current state of the lamp. Instead of two
locations, it is also possible to use a variable:

automaton lamp:
event turn_on, turn_off;

disc bool on = true;

location:
initial;
edge turn_on when not on do on := true;
edge turn_off when on do on := false;
end

This alternate automaton uses a single variable named on. The data type of the variable is bool,
which means that the variable can only have one of two possible values: true or false. If variable on
has value true, the lamp is on, and if it has value false it is off. Initially, the lamp is on, as the initial
value of the variable is true. The automaton has only one location, with two edges. The first edge
indicates that the lamp can be turned on (event turn_on), only when it is not currently on (guard not
on), and then afterwards is on (variable on becomes true). Similarly, the second edge indicates that
the lamp can be turned off, only when it is currently on, and then afterwards is on.

Both models represent a lamp that is initially on, and can be turned off, on, off again, on again, etc,
repeating the behavior forever. Which approach is best depends on your preference, and on the
rest of the model. It is however also possible to use both locations and a variable:

automaton lamp:
event turn_on, turn_off;



disc bool on2 = true;
location on:

initial;

edge turn_off do on2 :

false goto off;

location off:
edge turn_on do on2 :
end

true goto on;

This automaton has the same behavior as the previous two automata. Variable on is renamed to on2,
as a variable can not have the same name as a location of that same automaton.

While it is possible to model a lamp like this, this automaton duplicates the information about
whether the lamp is on or off. This makes the automaton larger and more complex than it needs to
be. In general, it is usually better to choose either a variable, or multiple locations, to express
something, and not both. In several future lessons, we’ll see that combining multiple locations with
variables is useful, but not to express the same thing. Furthermore, an other future lesson explains
how to use a location as a variable.

2.4.5. Global read, local write

Discrete variables can only be declared in automata, and may only be assigned (given a value,
written) by that automaton. They may however be read globally. Consider the following CIF
specification:

automaton customer:
location:
initial;
edge queuel.enter when queuel.count <= queue2.count;
edge queue?.enter when queue2.count <= queuel.count;
end

automaton queuel:
event enter, leave;

disc int count = 0;

location:
initial;
edge enter when count < 2 do count := count + 1;
edge leave when count > @ do count := count - 1;

end

automaton queue?2:
event enter, leave;

disc int count = 0;



location:
initial;
edge enter when count < 2 do count :
edge leave when count > @ do count :

count + 1;
count - 1;

end

This specification models a supermarket, and features a customer and two queues. Customers
arrive and enter either of the queues. Eventually customers leave the queue.

Both queues (automata queuel and queue?) are identical, except for their names. They maintain the
count, which represents the number of customers in the queue. A queues is full if it contains two
customers. Customers can thus only enter a queue if less than two customers are present. Similarly,
it is only possible for a customer to leave a queue if there is a customer in the queue.

Customers decide to which queue they go, based on the number of customers already present in
those queues. A customer only enters the first queue if that queue has less than or the same
number of customers as the second queue. Similarly, a customer only enters the second queue if
that queue has less than or the same number of customers as the first queue. If the queues have the
same number of customers, the customer can choose either queue.

The enter event declared in the first queue (queuel) is used by both the customer automaton and the
queuel automaton. The event is thus only possible (enabled) if both automata can participate. Both
automata restrict the occurrence of the event using a guard. The event is thus only possible if both
guards hold. That is, a custom never enters the first queue if it is full, but it also never enters that
queue if it has more customers than the second queue.

The state space of this specification is as follows:

2/0
. queu@ae”ter
queuel,e}“ Yueyey ot
1/0 2/1
rer qu, el qu,
queuel-e“ = eue-?-ent& queuel‘e“ - eue'?-ente,
) qu, A qu
C\Ueuel‘e}‘ cue2 Exjt queuel‘e Cle2, T
Gue enter v Que entel 2/2
qUEue‘? 1 et Quey, 5y et
&, eued- 82 et eued -
Xit 0/1 qu ’:; 1/2 qu
l-e“
‘M queve = ot
Xt sz que\.\

The states are labeled with the counts of the first and second queues.

The customer automaton uses the values of the variables of the queue automata, and thus reads
variables of other automata. This is allowed, due to the global read concept of CIF. This concept
allows for short guards, that directly and intuitively represent the condition under which an event
may take place.

The global read concept should only be used when it is intuitive. In the supermarket example, the
customer can physically see how many customers are in the queues. It is therefore intuitive to
directly refer to the count variables of the queue automata. If however the customer would not be
able to physically observer the queues, then the customer would not be able to directly base its



decision of which queue to join, on that information. In that latter case, it may not be a good idea to
model the guard in such way.

The local write concept means that discrete variables can only be written by the automata in which
they are declared. It is not allowed for the customer and queue? automata to write (change the value
of) the count variable of the queuel automaton. Only the queuel1 automaton may write that variable.
The local write concept prevents that multiple automata write to the same variable, as part of a
synchronizing event, potentially causing conflicting values to be assigned to that variable. This
leads to several benefits, most notably simpler semantics.

2.4.6. Monitoring

This lesson explains the concept of monitoring. It is explained using the following CIF specification:

automaton producer:
event produce, provide_a, provide_b;

location producing:
initial;
edge produce goto idle;

location idle:
edge provide_a goto producing;
edge provide_b goto producing;
end

automaton detect_changeover:
disc int count = 0;

location start:
initial;
edge producer.provide_a goto a;
edge producer.provide_b goto b;

location a:
edge producer.provide_b do count :

count + 1 goto b;

location b:
edge producer.provide_a do count := count + 1 goto a;
end

The producer automaton represents a producer that can repeatedly produce a product, and provide
it to either consumer 'a’ (event provide_a) or consumer 'b' (event provide_b). The consumers are not
modeled.

The detect_changeover automaton detects consumer changes. That is, it detects and counts how
often the producer switching from providing consumer 'a' with products to providing consumer 'b'
with products, and vice versa. Initially, the automaton waits for the first product to be provided. It
goes to either location a or location b, depending on which consumer is provided that first product.



Whenever a product is then provided to the other consumer, the count is incremented by one to
account for the changeover taking place. This also switches the location to the location for the other
consumer, where once again the automaton waits for a changeover.

The monitoring problem

There is a problem with the detect_changeover automaton. In its a location, it disables the provide_a
event, as there is no edge for that event, and the automaton has that event in its (implicit) alphabet.
This means that after a product is provided to consumer 'a', no more products can be provided to
that same consumer, until the producer provides a product to the consumer 'b', and the automaton
switches to the corresponding b location. However, the idea is that the producer can provide
products to either consumer, at all times, as that is the way it is intended. The detect_changeover
automaton currently prevents behavior that is present in the producer, while it is only meant to
observe or monitor products being provided. The state space of the specification is:

pfo'd".d&‘--a

P :
‘i’tﬂduce prﬂwﬂ'&a
— p/s produce > ifs i/a
MA 'A'
Ids---b‘ E ?106

Pro Vide_

i/b

/a
/b

The states are labeled with the first letters of the names of the current locations of the automata.
Note how the i/a and i/b locations only have outgoing transitions for either the provide_a transition
or the provide_b transition.

Monitoring with self loops

A simple solution is to allow the disabled events:

automaton detect_changeover:
disc int count = 0;

location start:
initial;
edge producer.provide_a goto a;
edge producer.provide_b goto b;

location a:
edge producer.provide_a; // Added self loop.
edge producer.provide_b do count := count + 1 goto b;

location b:
edge producer.provide_a do count := count + 1 goto a;
edge producer.provide_b; // Added self loop.



end

The provide_a event has been added to an edge in the a location. The edge is a self loop, meaning the
current location of automaton detect_changeover does not change as a result of taking the edge. This
means that essentially the event is ignored by the detect_changeover automaton, as the edge also
has no updates. The state space of the modified specification is:

mo\ﬁd&'--a
—{ pfs produce i/s i/a ﬁmhde ?{odﬂ':e i/b
Proy,; 1;::::::;::;§§3:
de_b p/b ?10‘*"&6

Pro Vide_ b

Now, whenever the provide_a event is possible, the provide_b event is also possible, and vice versa,
just as in the producer automaton. The detect_changeover automaton no longer restricts the
occurrence of the events; it only monitors them.

Monitoring with monitor automata

An alternative to adding self loops, is to use a monitor automaton. A monitor automaton is an
automaton that monitors or observes one or more events. The events that it monitors, are never
blocked (disabled) by that automaton. For our producer/changeover example, we can turn the
detect_changeover automaton into a monitor automaton for the provide_a and provide_b events:

automaton detect_changeover:
monitor producer.provide_a, producer.provide_b; // Monitor instead of the self
loops.

disc int count = 0;
location start:
initial;
edge producer.provide_a goto a;

edge producer.provide_b goto b;

location a:
edge producer.provide_b do count :

count + 1 goto b;

location b:
edge producer.provide_a do count :
end

count + 1 goto a;

By default, automata don’t monitor any events. Using a monitor declaration with one or more
events, turns the automaton into a monitor automaton for those events. For the



producer/changeover example, the behavior with the monitor automaton is exactly identical to the
behavior of the specification with the self loops.

By omitting the events from the monitor declaration, an automaton monitors all events of its
alphabet:

monitor; // Monitor all events in the alphabet of the automaton.

For the producer/changeover, which has only the provide_a and provide_b events in its alphabet,
this would result in the same behavior as for the automaton that monitors the two events explicitly.

Using a monitor automaton instead of self loops has several advantages. A monitor declaration has
to be provided only once, while self loops often have to be added to several locations. Furthermore,
if the automaton is changed, it may be necessary to add or remove self loops, while the monitor
declaration can most often be kept as is.

2.4.7. 0ld and new values in assignments

This lesson explains old and new values of variables in assignments, multiple assignments, and the
order of assignments.

0Old and new values

Consider the following CIF specification:

automaton counter:
event increment;

disc int count = 0;

location:
initial;
edge increment do count := count + 1;
end

The counter automaton represents a counter that starts counting at zero, and can be incremented in
steps of one.

In assignments, the part to the left of the := is called the left hand side of the assignment, or the
addressable. The addressable is the variable that is assigned, and gets the new value. In the example
above, variable count is assigned a new value.

The part to the right of the := is called the right hand side of the assignment, or the (new) value. In
the example above, the new value is computed by taking the current or old value of variable count
and incrementing it by one.

In general, for variables used to compute the new value, always the old value of those variables are
used. The new values for variables after a transition, are always computed from the old values of



variables from before that transition.

Multiple assignments

It is allowed to update multiple variables on a single edge, leading to multiple variables getting a
new value as part of a single transition. For instance, consider the following CIF specification:

automaton swapper:
event swap;

disc int x =0, y = 0;
location:
initial;
edge swap do x =y, y i=x + 1;

end

The swapper automaton declares two variables, x and y. It keeps swapping the values of both
variables, each time increasing the value of y by one.

Initially, both variables have value zero. During the first swap, variable x gets the value of variable y.
Since the old values of the variables are used to compute the new values, variable x remains zero.
Variable y gets the old value of variable x, which is also zero, incremented by one. The result of the
first swap is that x remains zero and y becomes one.

During the second swap, x gets the value of variable y, which is then one. Variable y gets the value
of variable x, which was still zero before the second swap, incremented by one. Both variables are
thus one after the second swap.

During the third swap, x gets the value of variable y from after the second swap, and thus remains
one. Variable y becomes two.

The state space of this somewhat artificial example is as follows:

}

Swa| swa sSwa swa swa sSwa swa
0/0 P 0/1 P 11 P 1/2 P 2/2 P 2/3 P 3/3 P 3/a

The states are labeled with the values of variables x and y.

Assignment order

It is important to note that since the new values of the variables are computed from the old values
of the variables, assignments are completely independent of each other. In the example above,
variable x is assigned a new value in the first assignment, and variable x is also used to compute the
new value of variable y. However, the old value of variable x is used to compute the new value of
variable y. Therefore, the assignment to x, which indicates how x should be given a new value, has
no effect on the new value off y, as the old value of x is used for that, regardless of whether x is



assigned a new value.

Since assignments are independent of each other, the order of the assignments of the edge does not
matter. Consider the following alternative edge:

edge swap do y :=x + 1, x :=y;

The assignments to x and y have been reordered. The behavior of the specification does not change
as a result of this reordering.

Multi-assignments

CIF supports both multiple assignments as well as multi-assignments. To see the difference,
consider the following examples:

edge ... do x :

=y, y:i=x+1; // Multiple (two) assignments.
edge ... do (x, y) :=

(y, x + 1); // Single multi-assignment.

The first edge has multiple assignments, namely one assignment to variable x and one assignment
to variable y. The second edge has one assignment, that gives new values to variables x and y. Both
are identical, in that they have the same affect: variable x is given the old value of variable y and
variable y is given the old value of variable x incremented by one. Generally, using multiple
assignments is preferred over using multi-assignments, as the former is easier to read. However, in
certain cases, such as for tuple unpacking, only the latter variant can be used.

Event synchronization and assignment order

Consider a system with two conveyors. Products enter on the first conveyor, and move towards the
second conveyor. Once they leave the first conveyor, they move onto the second one. Once they exit
from the second conveyor, they leave the system. The positions of the left sides of the boxes are in
range zero to seven, as indicated in the following figure:

@ O__9©

0 1 2 3 4 5 6 7

This system can be modeled using the following CIF specification:

event move;

automaton conveyor1:
monitor move;
event exit1;
disc int pos = 0;



location:
initial;
edge move when pos < 4 do pos := pos + 1;
edge exit1 when pos = 4 do pos := 0;

end

automaton conveyor?2:
monitor move;
event exit2;
disc int pos = -1;

location:
initial;
edge conveyorl.exit1 when pos = -1 do pos := conveyorl.pos;
edge move when pos >= @ and pos < 7 do pos := pos + 1;
edge exit2 when pos = 7 do pos := -1;
end

Each conveyor is modeled using an automaton. Both conveyors use a pos variable to represent the
position of the left side of the box. The first conveyor gets a new box as soon as one leaves. The
second one has to wait for a box from the first, and can thus be without a box. This is represented
by value -1 for the pos variable from automaton conveyor2. The -1 value is not a actual position, but
a special value indicating that no box is present on the conveyor.

Boxes on the first conveyor can move towards the second conveyor (event move), until they reach
position 4. They then leave the first conveyor (event exit1), and a new box immediately enters the
first conveyor (variable pos is reset to zero).

Boxes enter the second conveyor when they leave the first conveyor (event exit1 from conveyor1).
The position of the box is then transferred from the first conveyor to the second. The box keeps
moving (event move) on the second conveyor until it reaches position 7. At position 7 it leaves (event
exit2) the second conveyor, and the system.

Both automata synchronize over the move event, meaning that the boxes on both conveyors move at
the same time. Both automata monitor that event to ensure it is never blocked if only the other
conveyor can actually move.

Both automata synchronize over the exit1 event. The first conveyor resets is own position (variable
pos) to zero. The second conveyor sets its own position (variable pos) to the position of the first
conveyor. Since old values of variables are used to compute the new values, the new value of
variable pos in conveyor? is given the old value of variable pos from conveyor1. This is not influenced
by the assignment to variable pos of conveyor1 to zero, as assignments are independent, and the
order of assignments does not matter, just as for multiple assignments on a single edge.

The state space of this specification is as follows:



—a 0/—1 maove lf—l move 2/_1 move 3/._1 move 4/._1 exitl Uf4 move 1/5 move 2/5 move 3/7 move 4/?
move maove

The states are labeled with the values of the pos variables of the automata for the first and second
Conveyors.

The important part of the state space is the transition from state 4/-1, where the box of the first
conveyor is at the end and the second conveyor has no box, to state /4, where the first conveyor
has received a new box at position zero, and the second conveyor has taken over the box (and the
administration of its position) from the first conveyor.

2.4.8. The tau event

Events allow for synchronization, allowing for interaction between automata based on events. If
however an automaton has an edge that performs some internal processing, the event may not
always be relevant. Consider for instance the following CIF specification:

automaton machinel:
event process, provide;
disc int id = 0;

location processing:
initial;
edge process do id := id + 1 goto providing;

location providing:
edge provide goto processing;
end

automaton machine2:
location:
initial;
edge machinel.provide;
end

The specification models two machines. Products enter the first machine, which processes them
(event process) and assigns them an id. The machine them provides (event provide) them to the
second machine. The second machine currently just accepts the products provided by the first
machine, but would in reality likely perform its own processing as well. The state space of the
specification is as follows:

process
_—
—»  processing providing
-,
provide



The states are labeled with the names of the current locations of automaton machinel. Since
automaton machine2 has only a single location, its current location does not change, and it is
therefore not included in the state names.

The provide event synchronizes over both automata, while the process event is local to the first
machine. The process event is not essential, and could be left out:

automaton machinel:
event provide; // No more 'process' event.
disc int id = 0;

location processing:
initial;
edge do id := id + 1 goto providing; // No more event on the edge.

location providing:
edge provide goto processing;
end

automaton machine2:
location:
initial;
edge machinel.provide;
end

By omitting the event from an edge, the tau is used for that edge. The tau event is an event that is
implicitly always present without declaring it. The state space of this modified specification is:
tau
—_—
—»  processing providing
,—
provide

The tau event does not synchronize. You can think of this as each automaton having its own local
tau event, and since then they are different events, they do not synchronize. If multiple automata
can perform a transition for an edge with the tau event, this leads to potential transitions for each
of those edges. Since they are all labeled with the tau event, it is impossible to distinguish them
solely based on their label. This is a form of non-determinism.

Using the tau events saves having to declare a local event, and also saves having to put that event
on the edge. It thus leads to smaller specifications. However, as explained above, if tau is used on
multiple edges of multiple automata, the different tau transitions can no longer be distinguished
from each other in the state space. The use of the tau event is thus always a trade-off.

It is also possible to explicitly use the tau event:

edge tau goto ...;

The tau event can thus be used instead of 'regular’ events, and may even be combined with 'regular'



events on the same edge:

edge provide, tau goto ...;

Omitting the events from an edge defaults to a single tau event, as shown in one of the examples
above.

2.4.9. Initial values of discrete variables

Discrete variables can be given an initial value with their declaration:

disc int x = 1;

The initial value may be omitted, leading to the default value of its data type being used:

disc int x;
disc bool vy;

The default value of integer typed variables is 0. The default value of boolean typed variables is
false.

It is possible to indicate that a variable has more than one potential initial value:

disc int x in {1, 2, 4};

This declares a variable x that has three potential initial values. Variables can only have one value
at a time, so an initial value has to be chosen from the set of potential initial values. In other words,
initially the value of variable x is either 1, 2, or 4. For information on how to store multiple values in
a single variable, see the lessons on types and values, in particular those on tuples, lists, and sets.

It is also possible to indicate that a variable can have any arbitrary initial value:

disc int x in any;
disc bool y in any;

Variable x can initially have any value. The only constraint is that the initial value must be an
integer value, as it must conform to the integer type (int) of the variable. Examples of initial values
include -1027, 0, 1, and 12345. Variable y can initially have any value, as long as that value is a
boolean value, due to the variable having a boolean type (bool). There are only two boolean values,
true and false.



Discrete variables with multiple potential initial values and arbitrary initial values essentially
parametrize the specification. The exact initial value is to be chosen or configured later on. This
allows a single specification to be used for various different combinations of initial values.

So far all examples used literal values to initialize the variables. However, it is also allowed to use
expressions to compute initial values, for instance based on the initial values of other variables:

disc int x = 1; // Initial value: 1
disc int y = x * 2; // Initial value: 2
disc int z = x + y; // Initial value: 3

Variable x is explicitly initialized with value 1. Variable y is initialized to the initial value of x,
multiplied by two. Variable z is initialized to the sum of the initial values of x and y. Using this kind
of initialization is useful if the initial values must be kept consistent. Changing the initial value of x
automatically also changes the initial values of y and z.

The order of the declaration of the variables does not matter. We could just as easily declare them

as follows:

disc int y = x * 2; // Uses variable x, which is declared later.
disc int x = 1;

Variable vy is still initialized using the initial value of variable x, which is now declared after
variable y. It is not allowed to construct loops, where the initial values of variables depend on each
other:

disc int x = y; // Invalid initial value due to cyclic dependency.
disc int y = z;
disc int z = x;

Variable x uses the value of variable y, which uses the value of variable z, which in turn uses the
value of variable x again. This is not allowed in CIF, as it creates a cyclic dependency. However,
since no restrictions are introduced on the initial values of variables x, y, and z, except that they
must be equal to each other, we can declare them as follows:

disc int x in any; // Explicit 'any' breaks the cyclic dependency.
disc int y = z;
disc int z = x;

Here, variable x is explicitly initialized to an arbitrary value. The other variables are initialized to
be equal to whatever arbitrary value is chosen as initial value for variable x.

2.4.10. Initialization predicates

Initialization predicates can be used to specify the allowed initial locations of automata, as well as to



restrict the allowed initial values of variables and initial states in general.

Initial locations of automata

Initialization predicates can be used to specify the allowed initial locations of automata:

automaton a:
location loct:
initial;

location loc2:
initial true;

location loc3;

location loc4:
initial false;
end

Automaton a has four locations. Location loc1 has the initial keyword, and is thus allowed to be
the initial location. Location loc2 also uses the initial keyword, but additionally specifies a
predicate that indicates under which conditions the location may be the initial location. Since it is
true, which always holds, it does not impose any additional restrictions, and can thus always be the
initial location. In fact, this is identical to location loc1, which did not specify a predicate, in which
case it default to true as well.

Location loc3 does not specify anything about initialization, and thus can never be the initial
location. Location loc4 can only be the initial location if false holds. Since false never holds,
location loc4 can never be the initial location. In fact, this is identical to location loc3, which did not
specify any initialization at all, in which case it default to false as well.

Locations loc1 and loc? are the potential initial locations, while locations loc3 and loc4 can not be
chosen as initial locations of automaton a. Since an automaton can only have one current location,
an initial location has to be chosen from the potential initial locations. In other words, the initial
location of automaton a is either location loc1 or location loc2.

Consistency between initial locations and initial values

Consider the following CIF specification:

automaton odd_even:
event inc, dec;
disc int n = 5;

location odd:



initial;
edge inc do n := n + 1 goto even;
edge dec do n :=n - 1 goto even;

-+

location even:
edge inc do 1 goto odd;
edge dec do n := n - 1 goto odd;
end

jus
I
+

Automaton odd_even keeps track of a value (n) that can constantly be incremented (event inc) and
decremented (event dec) by one. It has two locations, that keep track of the odd/even status of value
n. Currently, the initial value is 5, which is odd. Therefore, the initial keyword is specified in the
odd location. However, if we change the initial value of variable n to 6, we have to change the initial
location as well, to ensure consistent initialization. To automatically keep the initial location
consistent with the initial value of variable n, we can change the specification to the following:

automaton odd _even:
event inc, dec;
disc int n = 5;

location odd:
initial nmod 2 = 1; // Initial location if 'n' is odd.
edge inc do n :=n + 1 goto even;
edge dec do n := n - 1 goto even;

location even:
initial n mod 2 = @; // Initial location if 'n' is even.
edge inc do n :=n + 1 goto odd;
edge dec do n := n - 1 goto odd;
end

In this specification, location odd can only be the initial location if the value is odd (the value
modulo two is equal to one), and location even can only be the initial location if the value is even.
Changing the initial value of variable n then also changes the potential initial locations. Since the
value is always odd or even, and can’t be both odd and even, automaton odd_even always has
exactly one potential initial location.

Restricting initialization

Initialization predicates can also be used to restrict the initial values of variables. And more
generally, they restrict the possible initial states. It is for instance also possible to specify which
combinations of locations of automata and values of variables are allowed as initial states.

As an example of restricting the allowed initial values of variables, consider the following CIF
specification:


https://en.wikipedia.org/wiki/Modular_arithmetic

automaton a:
disc int x 1in any;

initial x mod 2 = 1;

location ...
end

In this partial automaton, variable x can be initialized to any integer value, as indicated by its int
type and the any keyword. However, the initialization predicate states that initially, the value of x
module two must be equal to one. That is, the value of variable x must initially be odd.

It is allowed to specify initialization predicates inside automata, but it is also allowed to place them
outside the automata:

automaton a:
disc int x in any;

location ...
end

automaton b:
disc int x in any;

location ...
end

initial a.x = 2 * b.x;

Here, two automata each declare a variable that can have arbitrary initial values. The initialization
predicate specifies that the initial value of variable x from automaton b must be twice the initial
value of variable x from automaton a.

Similarly, the initial locations of two automata can be restricted using additional initialization
predicates:

automaton a:
location al:
initial;

location a2:
initial;
end

automaton b:
location b1:



initial;

location b2:
initial;

end

initial (a.al and b.b1) or (a.a2 and b.b2);

The two automata, a and b, each have two potential initial locations. The initialization predicate
outside the automata only allows certain combinations of initial locations of the two automata. It
specifies that if automaton a starts in location a1, then automaton b must start in b1. Alternatively, if
automaton a starts in location a2, then b must start in b2.

Note that locations of automata that are not indicated as being potentially initial are never initial
locations. The initialization predicates outside the automata further restrict initialization, but can
never make locations initial that were not already indicated as such.

This last example can however be more simply specified using only initialization predicates in
locations:

automaton a:
location al:
initial;

location a2:
initial;

end
automaton b:

location b1:
initial a.al;

location b2:
initial a.a2;

end

The initialization for automaton a1l remains as it was before. Instead of restricting the initialization
combinations of the two automata using an extra initialization predicate, these restrictions are not
put in the initialization predicates of the locations of automaton b. Location b1 can only be the
initial location of automaton b if automaton a is in location al. And similarly, location b2 can only be
its initial location if automaton a starts in a2.

It is generally recommended to use initialization predicates in locations, where possible. If



initialization must be further restricted by an initialization predicates outside locations, it is
recommended to place it inside an automaton if the condition only applies to declarations from that
automaton, and to place it outside of the automata if the condition applies to declarations of
multiple automata.

2.4.11. Using locations as variables

Consider the following CIF specification:

automaton machinel:
event start1, donel, resetl;
disc bool claimed = false;

location idle:
initial;
edge start1 when not machine2.claimed do claimed := true goto processing;

location processing:
edge donel do claimed := false goto cool_down;

location cool_down:
edge reset1 goto idle;
end

automaton machine2:
event start2, done2, reset?2;
disc bool claimed = false;

location idle:
initial;
edge start1 when not machinel.claimed do claimed := true goto processing;

location processing:
edge donel do claimed := false goto cool_down;

location cool_down:
edge reset1 goto idle;
end

This specification models two machines, which produce products. The machines share a common
resource, which may only be used by at most one of them, at any time (see mutual exclusion).
Initially, the machines are idle. Then, they warm themselves up. Once they start processing, they
set their boolean variable claimed to true to indicate that they claimed the shared resource. After
processing, the machines release the resource, by setting claimed to false. They finish their
processing cycle by cooling down, before starting the cycle for the next product. To ensure that a
machine can not claim the resource if the other machine has already claimed it, the edges going to
the processing locations have a guard that states that it is only allowed to claim the resource and
start processing, if the other machine has not already claimed the resource. The state space of this
specification is:


https://en.wikipedia.org/wiki/Mutual_exclusion

resetl reset?

donel start2

p/i cfi c/p

Startl dOne 2
reseth

\ ese t2 /
Srarrz . . don el
W & startl p/e

reset2 resetl

— ifi cfc

The states are labeled with the first letters of the names of the current locations of the automata.

The specification can alternatively be modeled as follows:

automaton machinel:
event start1, donel, resetl;

location idle:
initial;
edge start1 when not machine2.processing goto processing;

location processing:
edge donel cool_down;

location cool_down:
edge reset1 goto idle;
end

automaton machine2:
event start2, done2, reset2;

location idle:
initial;
edge start1 when not machinel.processing goto processing;

location processing:
edge donel cool_down;

location cool_down:
edge resetl goto idle;
end

The claimed variables and corresponding updates have been removed, and the guards no longer
use those variables. Instead, the edge for the start1 event now refers to the processing location of
automaton machine2. The guard states that the first machine can perform the start1 event, only if
the second machine is not currently in its processing location. In other words, the guard states that
the first machine can start processing as long as the second machine is not currently busy
processing (and thus using the shared resource).

The processing location of automaton machine? is used as a boolean variable. Using the location as a
variable saves having to declare another variable (claimed) that essentially holds the same
information, and needs to be explicitly updated (on two separate edges) to the correct value.



2.4.12. State (exclusion) invariants

The lesson on discrete variables used the following CIF specification:

automaton counter:
event increment, decrement;

disc int count = 3;

location:
initial;
edge decrement when count > @ do count := count - 1;
edge increment when count < 5 do count := count + 1;

end

The counter can repeatedly be incremented and decremented by one, as long as the count remains
at least one and at most five. To keep the count in the allowed range of values, guards were used to
limit the occurrence of the increment and decrement events.

Instead of using guards, it is also possible to use state (exclusion) invariants, also called state
invariants, or just invariants:

automaton counter:
event increment, decrement;

disc int count = 3;

invariant count >= 0; // Added invariants
invariant count <= 5;

location:
initial;
edge decrement do count := count - 1; // No more guards
edge increment do count := count + 1;

end

The guards on the edges have been replaced by the two invariants. The first invariant specifies that
the value of variable count must always be at least zero. The second invariant specifies that the
value must also be at most five.

Invariants specify conditions that must always hold. Invariants must hold in the initial state, and all
states reached via transitions. If a transition results in a state where an invariant doesn’t hold, the
transition is not allowed and can’t be taken.

For the counter example, initially the count is 3. The edge for the increment event can be taken,
leading to a state where the count is 4. Taking another transition for the increment event leads to a
state where the count is 5. If we then were to take another transition for the increment event, the
count would then become 6. However, that violates the invariant. Therefore, in the state where the



count is 5, no transition for the increment event is possible. In other words, the invariant disables the
transition for the increment event for that state.

The two invariants can be specified in various ways:

// Multiple invariants, each with a single predicate.
invariant count >= 0;
invariant count <= 5;

// Single invariant, with multiple predicates.
invariant count >= @, count <= 5;

// Single invariant, with single predicate.
invariant count >= @ and count <= 5;

Each of these variants leads to the exact same behavior, and which variant to use depends mostly
on the modeler’s own preference.

The benefit of guards over invariants is that they more explicitly state the condition under which
an edge can lead to a transition. If a guard doesn’t hold, the edge can’t be part of a transition. It is
thus immediately clear when the edge can lead to a transition. For invariants, the update has to be
calculated first, after which the invariants can be evaluated for the state resulting from the
transition. If one of the invariants doesn’t hold, the transition is not allowed. In the case of the
invariants, it is not as immediately clear from the edge alone, when that specific edge can or can
not lead to a transition.

The benefit of invariants over guards is that they apply to all edges. If several edges in an
automaton have updates to the same variable, then the invariants need to be specified only once,
and apply to all transitions, for all edges. Using guards, all the edges that modify the variable would
need their own guards, and if the updates are different, the different edges usually require
different guards. Furthermore, if new edges with updates to the same variables are added, the
invariant is already present, but guards have to be added, which can easily be forgotten. In those
cases, invariants can thus help keep the specification consistent.

Another benefit of invariants is that they explicitly state the conditions that must hold in relation to
the variables, while guards specify the condition under which the update is allowed. Consider the
following CIF specification:

// Using invariants.
automaton a:
disc int x;

invariant @ <= x, x <= 100;
location:
initial;
edge do x = 2 * x + 3;
end



// Using guards.
automaton a:
disc int x;

location:
initial;
edge when x <= 48 do x =2 * x + 3;
end

The goal is to keep the value of in the range [0..100]. The invariant is simple and direct. The guard
however, has to state the condition under which the update does not violate the goal. That is, the
upper bound has to be decreased by three, and the result has to be divided by two, to get the
highest value (48) for which the update is still within the valid range of values. That is, for value 48
the update results in value 99 (2 * 48 + 3 = 99), and for value 49 the update results in value 101 (2 *
49 + 3 = 101). The more complex the update, the harder it is to figure out the guard to use to keep
satisfy the goal.

You can of course also use 2 * x + 3 <= 100 as guard, instead of x <= 48. However, this duplicates
part of the update in the guard.

So far, all invariants have been specified in automata. They may however also be specified outside
of the automata, similar to initialization predicates. It is generally recommended to place an
invariant inside an automaton if the condition only applies to declarations from that automaton,
and to place it outside of the automata if the condition applies to declarations of multiple automata.

Furthermore, invariants can be placed in a location. Such an invariant only has to hold while the
location in which it is specified is the current location of its automaton.

Naming state (exclusion) invariants

In some cases, it might be useful to give names to invariants. It may improve the readability of the
model and it makes it easier to refer to them. Names can be given as follows:

// Multiple named invariants.
invariant nonNegativeCount: count >= 0;
invariant maximumCount: count <= 5;

// Shorter notation for multiple named invariants.
invariant nonNegativeCount: count >= @, maximumCount: count <= 5;

Invariant names must be unique.

2.4.13. State/event exclusion invariants

Consider an elevator, consisting of three parts: a motor to make the elevator move up and down, a
door that can be opened and closed to let passengers enter and exit, and an emergency button that
can be used to stop the elevator in case of an emergency. The following CIF specification models the
three parts:



automaton motor:
event turn_on, turn_off;

location off:
initial;
edge turn_on goto on;

location on:
edge turn_off goto off;
end

automaton door:
event open, close;

location closed:
initial;
edge open goto opened;
location opened:

edge close goto closed;
end

automaton emergency_button:
event push, release;

location released:
initial;

edge push goto pushed;

location pushed:

edge release goto released;

end

Each part is modeled by an automaton. Since the automata don’t share any events, they operate
independently. What is missing, is a controller that links the different automata, and controls them
in a safe manner. Such a controller restricts the behavior of the individual automata, allowing only
the combined behavior that is deemed desired. There are several ways to restrict events, including
introducing synchronization between the different automata, and adding guards. The downside of
these approaches it that they require modification of the automata. What if we wanted to specify
the controller separately from the behavior of the physical system? We could introduce an
additional automaton, that synchronizes with the existing automata. For instance, we could add the

following to the CIF specification:

automaton controller:
location:
initial;

edge motor.turn_on when door.closed and emergency_button.released;

end



This controller introduces restrictions for the turn_on event of the motor. In this particular case, the
controller ensures that the motor may only be turned on when both the door is closed and the
emergency button is released. By restricting the event, the controller prohibits the event from
taking place in certain states, ensuring that only the desired behavior remains.

It is nice that we can separate the description of the physical behavior of the elevator from the
controller that controls it. This separation of concerns may make it easier to reason about the
behavior, it may make it easier to adapt the controller when the physical system doesn’t change,
and it may make it easier to reuse the model of the physical system for other purposes.

However, modeling an automaton with a single location that must then also be initial requires
quite some syntax. State/event exclusion invariants can serve the same purpose, but are often
easier to use, shorter to write, and more intuitive to read. Instead of the controller automaton, we
can also use the following:

invariant motor.turn_on needs door.closed and emergency_button.released;

Each state/event exclusion invariant restricts an event, preventing it from happening in certain
states. That is, the event is excluded from taking place in certain states. In this case, the turn_on
event of the motor automaton needs the door to be in its closed location and the emergency_button to
be in its released location, for the event to be allowed/enabled. For the states in which that
condition doesn’t hold, the event is disabled.

The invariant consists of two conditions. It can also be written as two separate state/event exclusion
invariants, one for each condition:

// Single state/event exclusion invariant.
invariant motor.turn_on needs door.closed and emergency_button.released;

// Multiple state/event exclusion invariants.
invariant motor.turn_on needs door.closed;
invariant motor.turn_on needs emergency_button.released;

The second and third invariants lead to the same behavior as the first combined invariant. The
second invariant ensures that the event can only take place when the door is closed, while the third
invariant ensures that the event can only take place when the emergency button is released. The
second and third invariants each indicate a necessary condition that must hold for the event to be
allowed/enabled. Together, they require that both conditions hold, for the event to be
allowed/enabled. If one of the conditions doesn’t hold, the event will be disabled.

The door is either opened or closed. So far, we’ve required that the door is closed to allow the motor
to be turned on. We can also specify it the other way around: to disallow the motor to be turned on,
while the door is opened:

// State/event exclusion invariant to specify when event is allowed/enabled.
invariant motor.turn_on needs door.closed;



// State/event exclusion invariant to specify when event is disallowed/disabled.
invariant door.opened disables motor.turn_on;

Both invariants have the exact same effect. The first invariant only allows the motor to be turned
on while the door is closed, which means that it disallows the motor to be turned on in all other
situations, namely when the door is opened. And that is exactly what is specified by the second
invariant: when the door is opened, turning the motor on is disallowed/disabled. In general,
state/event exclusion invariants can always be specified as a positive form (allowed/enabled) and a
negative form (disallowed/disabled). It is up to the modeler to choose, based on considerations such
as personal preference and readability. Consider the following four alternative forms:

// Single state/event exclusion invariant for enabling the event.
invariant motor.turn_on needs door.closed and emergency_button.released;

// Multiple state/event exclusion invariants for enabling the event.
invariant motor.turn_on needs door.closed;
invariant motor.turn_on needs emergency_button.released;

// Single state/event exclusion invariant for disabling the event.
invariant door.opened or emergency_button.pushed disables motor.turn_on;

// Multiple state/event exclusion invariants for disabling the event.
invariant door.opened disables motor.turn_on;
invariant emergency_button.pushed disables motor.turn_on;

Each of the four forms has the exact same effect, but is written in a different way:.

We already saw earlier that for state/event exclusion invariants that introduce necessary
conditions for an event to be enabled (the needs variant), the conditions can be combined using an
and operator to form a combined condition, for a single invariant.

Here, we also see how in a similar way, state/event exclusion invariants that introduce sufficient
conditions for an event to be disabled (the disabled variant) can be combined. Each of them
individually has a condition, that if satisfied disables the event, regardless of the other invariants.
So, if one of them disables the event, the event is disabled. To combine such invariants into a single
invariant, the conditions need to be combined using an or operator, as shown above.

It may occur that multiple events need to be disabled for the same conditions. Instead of writing
multiple invariants with the same conditions, one for each event, they can also be combined:

// Two separate invariants with same condition, for different events.
invariant motor.turn_on needs emergency_button.released;
invariant door.close needs emergency_button.released;



// Combined invariant, for multiple events.
invariant {motor.turn_on, door.close} needs emergency_button.released;

The first two invariants have the same condition, but restrict different events. The third invariant
has the same condition, but restricts both events. In general, for all state/event invariants, multiple
events may be given, if they share the same condition. The events must then be separated by spaces
and be enclosed in curly brackets ({...}).

Naming state/event exclusion invariants
In some cases, it might be useful to give names to invariants. It may improve the readability of the
model and it makes it easier to refer to them. Names can be given as follows:

invariant controller: motor.turn_on needs door.closed and emergency_button.released;

Invariant names must be unique. It is not supported to give a name to a combined invariant that
applies to multiple events.

2.5. Types and values

2.5.1. Types, values, and expressions

This lesson explains the difference between types, values, and expressions. These concepts have
already been used in previous lessons, but this lesson names them explicitly, and also explains the
relations between them. Furthermore, this lesson serves as an introduction for the coming lessons,
which rely heavily on these concepts. Consider the following declarations of discrete variables:

disc int x = 1;
disc inty =2 * x;

The first declaration declares a discrete variable named x, and the second declaration declares a
discrete variable named y. Both variables have an int data type. A data type is usually just called a
type, if there is no confusion with other kinds of types. The type of a variable indicates the potential
or allowed values of the variable. Variable x is initialized to value 1. Variable vy is initialized to twice
the value of x, meaning it is initialized to value 2.

Both 1 and 2 * x are expressions. Expressions are combinations of among others literal values (e.g.
1), variables (e.g. x), and operations (e.g. *) on them. Expressions can be computed, resulting in a
value. This is called evaluation of the expression.

Expression 2 * x can be evaluated. Evaluating the expression results in value 2 if the value of x is 1,
and in value 4 if the value of x is 2. Expressions can thus be evaluated to different values, depending
on the values of the variables that occur in them.



Expression 1 consists of only a single value, called a literal value expression. Evaluation always
results in that single value. Expression 1 + 3 evaluates to value 4. Even though it does not consist of
only just a literal, the value is the same for each evaluation. The expression represents a constant
value.

2.5.2. Values overview

The values of CIF (and their types) can be categorized into different categories: elementary values,
container values, and miscellaneous values. Elementary values represent single values, such as a
single number. Container values represent multiple values. The different container values combine
or store the values in different ways. The elementary and container values are described in the
remainder of this part of the tutorial. The miscellaneous values are special, and are explained later
in the tutorial. The remainder of this lesson gives an overview of the values available per category,
along with short descriptions of each of the different kinds of values.

Elementary values

Booleans

Represents truth values of for instance guards and other conditions. The only two possible
values are true and false.

Integers

Represent integer numbers, such as -123 and 5.

Enumerations

Represent enumerated values, which are collections of names each representing a different
value. For instance, a enumeration named color could have values red, green, and blue.

Reals

Represent real numbers, such as 1.56 and -2.7e6 (scientific notation for 2.7 million).

Strings

Represent textual values, such as "hello world" and "some text".
Container values

Tuples

Tuples have two or more ordered values, each of which can have a different type. For instance:
(1, true, 5.0).

Lists

Lists have zero or more ordered values, each of which has the same type, and possibly with
duplicates. For instance: [1, 5, 2, 1].

Sets

Sets have zero or more unordered values, each of which has the same type, and without any
duplicates. For instance: {1, 5, 2}.



Dictionaries

Dictionaries have keys and associated values. The keys are unique and each map to a value. For
instance: {1: true, 2: false, 3: false}l.

Miscellaneous values

Functions

Functions take values and use them to compute other values, possibly using complex and
lengthy calculations.

Distributions
Stochastic distributions allow for sampling, making it possible to produce random values.
2.5.3. Integers

Integers are whole numbers, numbers without a fractional part. Examples include -123 and 5. The
default value of integers (int type) is 0. Several standard arithmetic operators and functions are
available to work with integers, including the following:

+9 // 9

--9 /79

9 + 4 // 13

9 -4 //5

9 * 4 // 36

9/ 4 // 2.25 (result is a real number, not an integer number)

Vo]

div 4 // 2 (9 /4 =2.25, so 4 fits at most two whole times in 9)
9 mod 4 // 1 (the remainder of 9 div 4)

pow(2, 4) // 16 (2 to the power of 4, or 2 * 2 * 2 * 2)
abs(-9) // 9 (absolute value)
min(9, 4) // 4 (minimum value)

9

max(9, 4) // (maximum value)

Integer values can be compared to other integer values:

X <y // less than

X <=y // less than or equal to

X =y // equal to

X I=y // not equal to

X >=y // larger than or equal to
X >y // larger than

The next lesson explains how to define ranged integers.



2.5.4. Ranged integers

CIF can only represent integer numbers (type int) in the range -2,147,483,648 (= -2°) to
2,147,483,647 (= 2*' - 1). Using values outside that range results in the CIF model being invalid, and
leads to runtime errors:

ERROR: Integer overflow: 9999999 * 9999999.
It is possible in CIF to explicitly specify that only a sub range of the integer values are allowed:
disc int[3..7] x;

This variable x can only have integer values that are at least 3 and at most 7. Assigning any other
value to x is not allowed. The default value is not @ but 3, as that is the value closest to @ that is in the
allowed range of values.

2.5.5. Reals

Reals or real numbers are numbers with a fractional part. Examples include 1.56 and -2.7e6
(scientific notation for 2.7 million). Real numbers must either have a fraction or use the scientific
notation, to distinguish them from integer numbers. The default value of reals (real type) is 0.0.
Several standard arithmetic operators and functions are available to work with reals, including the
following:

+1.23 // 1.23

--1.2 // 1.2

1.5 + 0.5 // 2.0

1.5 - 0.5 // 1.0

1.5 * 0.5 // 0.75

1.5/ 0.5 // 3.0

pow(3.5, 2.0) // 7.0 (3.5 to the power of 2, or 3.5 * 3.5)
abs(-1.5) // 1.5 (absolute value)
min(1.5, 0.5) // 0.5 (minimum value)
max(1.5, 0.5) // 1.5 (maximum value)
sqrt(16.0) // 4.0 (square root)
cbrt(16.0) // 2.0 (cube root)

sin(1.0) // 0.841... (sine)

cos(1.0) // 0.540... (cosine)

tan(1.0) // 1.557... (tangent)

10g(100.0) // 2.0 (logarithm to base 10)

1n(100.0) // 4.605... (natural logarithm)



Real values can be compared to other real values, as well as to integer values:

X <y // less than

X <=y // less than or equal to

X =y // equal to

x I=y // not equal to

X >=y // larger than or equal to
X >y // larger than

Integer numbers can often be written where real numbers are expected. Real values and integer
values can also often be combined using arithmetic operators and functions. Furthermore, it is

possible to convert between them, e.g as follows:

sqrt(16) // 4.0 (16 interpreted as 16.0)
1+ 0.5 // 1.5 (addition of an integer number and a real number)
max(0.5, 1) // 1.0 (maximum of an integer number and a real number)

<real>1 // 1.0 (cast from integer to real, explicit conversion)
round(1.6) // 2 (round real to closest integer, half up)
ceil(0.7) // 1 (round real up to integer)

floor(0.7) // @ (round real down to integer)

2.5.6. Booleans

Booleans represents truth values of for instance guards and other conditions and properties. The
only two possible values are true (condition or property holds) and false (condition or property
does not hold). The default value of booleans (bool type) is false. Several standard logical operators

are available to work with booleans, including the following:

not x // inverse

x and y // conjunction (both x and y must hold)

X or vy // disjunction (either x, y, or both must hold)
X =>y // implication (if x holds, y must hold)

X =y // equal to

x l=y // not equal to

The condition x < 3 evaluates to true if x is less than 3 and to false if x is 3 or larger than 3. The

result is thus a boolean value.

Conditions can be combined. x >= 3 and x <= 9 means that the value of x must be both at least 3
and at most 9. x >= 3 or x <= 9 means that the value of x must be at least 3, at most 9, or both. Since
the condition is always satisfied (it always evaluates to true), condition true can be used instead of x

>> 3 o0or x <=9


https://en.wikipedia.org/wiki/Logical_operator

2.5.7. Strings

Strings represent textual values, as a sequence of characters. String values are always written
between double quotes. An example is "hello world". The default value of strings (string type) is

the empty string "".

n n

Strings can be composed using the + operator. The expression "hello" + + "world" evaluates to
"hello world". For advanced text formatting, see the later lesson on text formatting.

2.5.8. Enumerations

Enumerations represent collections of related entities, such as types of products, types of available
resources, available machine types, different countries, different colors, different genders, and so
on. It is possible to use numbers to represent the different entities, for instance 0 for red, 1 for
orange, and 2 for green, to represent the different colors of a traffic light. However, these numbers
are rather arbitrary. Furthermore, they don’t actually represent numbers, but rather they represent
one of the entities (red, orange, green). Enumerations allow giving each entity a name, and to use
those names instead of numbers. This usually makes the model easier to read and understand. For
instance, consider the following:

enum TrafficColor = RED, ORANGE, GREEN;

The enum keyword is used to declare an enumeration. The TrafficColor enumeration has three
possible values or literals. The literals are named RED, ORANGE, and GREEN. An enumeration can be
used as data type, and the enumeration literals can be used as values:

disc TrafficColor light = RED;

The TrafficColor enumeration is used as type of the light variable. The light variable is given
value RED as its initial value. The default value of an enumeration type is its first literal (RED in this
case). However, it is usually preferred to explicitly initialize variables with enumeration types, for
readability.

edge change_color when light = RED do light := GREEN;

This edge has a guard that compares the value of the light variable to enumeration literal RED. Only
if the 1light is currently RED, may this edge be taken. The edge further assigns enumeration literal
GREEN as the new value of variable 1ight. The edge as a whole models that if the 1ight is currently
RED, it may change color (event change_color) and become GREEN.

2.5.9. Tuples

Tuples are used for keeping several (related) kinds of data together in one variable, e.g. the
identification number and weight of a box. A tuple consists of a number of fields, where the types



of these fields may be different. The number of fields is fixed. For instance, consider the following:

disc tuple(int nr; real weight) box;

Variable box has a tuple type, consisting of two fields, an integer typed field with name nr and real
typed field with name weight. The box variable has essentially two values, an integer typed value,
and a real typed value.

If multiple consecutive fields have the same type, the type need not be repeated for each of them. In
the following example, variables x1 and x2 have the same type:

disc tuple(int a; int b; real c; int d) x1;
disc tuple(int a, b; real c; int d) x2;

Literal values exist for tuple types:

disc tuple(int nr; real weight) box = (5, 2.7);

edge ..

. do box := (6, 3.4);

The box variable is initialized to a tuple value consisting of integer value 5 (identification number)
and real value 2.7 (weight). The entire value of the variable is reassigned in the assignment. That is,
both fields are given new values.

It is also possible to refer to a specific field of a tuple, using projection:

disc tuple(int nr; real weight) box = (5, 2.7);

disc int i;

disc real r;

edge ... do i := box[nr]; // Projection to field 'nr'.
edge ... do r := box[weight]; // Projection to field 'weight'.
edge ... do box[nr] := 1i; // Assignment to field 'nr'.
edge ... do box[nr] := box[nr] + 1; // Increment of field 'nr'.

The first edge uses projection to obtain the value of the integer nr field, and assign it to integer
variable i (i becomes 5). The second edge performs a similar operation for the weight field (r
becomes 2.7). The third edge assigns the value of integer variable i to the integer field nr of the box
variable. This changes only the value of the nr field. The value of the weight field of the box variable
is not affected by this assignment. The third edge increments the value of the nr field of the box
variable by one, leaving the weight of the box as is. Besides projection using field names, it is also
possible to do projection using 0-based indices:

disc tuple(int nr; real weight) box = (5, 2.7);
disc int i;



disc real r;

edge ... do i :
edge ... dor :

box[@]; // Projection to field 'nr'.
box[1]; // Projection to field 'weight'.

Index 0 refers to the first field, in this case field nr. Index 1 refers to the second field, etc. Projection
using indices is also called indexing. For tuples, it is usually preferred to use field names, rather
than indices, for readability.

It is possible to create a tuple from separate values, each stored in a variable:

disc tuple(int nr; real weight) box;
disc int i;
disc real r;

edge ... do box := (i, r); // Packing a tuple.

The right hand side of the assignment is a tuple literal value, as used before. The field values
however, are obtained by evaluation of variables, rather than using literal integer and real values.
This kind of assignment, where there is tuple variable at the left hand side, and values for each of
the fields of that tuple at the right hand side, is called packing a tuple.

It is possible to obtain the values of the fields of a tuple into separate variables:

disc tuple(int nr; real weight) box = (5, 2.7);
disc int i;
disc real r;

edge ... do i := box[nr], r := box[weight];
edge ... do (i, r) := box; // Unpacking a tuple.

The first edge uses projection on the variable box to obtain the values of the individual fields, and
assigns those extracted values to two separate variables. The second edge does the same thing as
the first edge, and is preferred in this case, because of its simple and short notation. This kind of
use, where at the left hand side of the assignment you see variables for each of the fields of the
tuple, and on the right hand side you see only one variable that has a tuple type, is called unpacking
a tuple.

2.5.10. Lists

A list is an ordered collection of values (called elements) of a same type. Lists can be used to model
anything where duplicate values may occur or where order of the values is significant. Examples
are customers waiting in a shop, process steps in a recipe, or products stored in a warehouse.
Consider the following:



disc list int x = [7, 8, 31;

Variable x has a list of integers as its value. In this case, its initial value is a literal list with three
integer elements. Lists are ordered collections of elements. [7, 8, 3] is thus a different list as [8,
7, 3].Lists are empty by default, and they may have duplicate elements:

disc list int x1; // Implicitly empty list.
disc list int x2 = []; // Explicitly empty list.
disc list int x3 = [1, 2, 1, 2, 21; // Duplicate elements in a list.

Since lists are ordered, there is a first element and a last element (unless the list is empty). An
element can be obtained by projection, usually called indexing for lists:

disc list int x = [7, 8, 31;

disc int i;

edge ... do i := x[@]; // 'i' becomes '7'

edge ... do i := x[1]; // 'i' becomes '8’

edge ... do i :=x[2]; // 'i' becomes '3’

edge ... do i :=x[3]; // error (there is no fourth element in the list)

edge ... do x[0] :=5; // the first element of 'x' is replaced by '5'

The first three edges obtain specific elements of the list, and assign them to variable i. The first
element is obtained using index or offset 0, the second element using index 1, etc. The index of the
last element is the length of the list (the number of elements in the list), minus one. Indexing does
not change the value of variable x. The fourth edge is invalid, as the fourth element (index 3) of
variable x is used, which does not exist. The fifth edge replaces only the first element (index 0) of
list x, while keeping the remaining elements as they are. It is also allowed to use negative indices:

disc list int x = [7, 8, 31;

disc int i;

edge ... do i :=x[-1]; // 'i' becomes '3’

edge ... do i :=x[-2]; // 'i' becomes '8'

edge ... do i := x[-3]; // 'i' becomes '7'

edge ... do i := x[-4]; // error (there is no element before element '7')

Negative indices start from the back of the list, rather than from the front. Index -1 thus always
refers to the last element, -2 to the second to last element, etc. As with the non-negative indices,
using a negative index that is out of range of available elements, results in an error. To obtain a
non-negative index from a negative index, add the negative index to the length of the list: 3 + -1 =
2,3 + -2 =1and 3 + -3 = 0. The following figure visualizes a list, with non-negative indexing (at
the top) and negative indexing (at the bottom):



x[0] x[1] x[2]

R
71 8|3
BT

x[-3] x[-2] x[-1]

Besides obtaining a single element from a list, it is also possible to obtain a sub-range of the
elements of a list, called a slice. Slicing also does not change the contents of the list. It results in a
copy of a contiguous sub-sequence of the list. The result of a slice operation is again a list, even if
the slice contains just one element, or no elements at all. Slicing requires two indices: the index of
the first element of the sub-range (inclusive), and the index of the last element of the sub-range
(exclusive). Both indices may be omitted. If the start index is omitted, it defaults to zero. If the end
index is omitted it defaults to the length of the list. If the begin index is equal to or larger than the
end index, the slice is empty. Similar to indexing, negative indices may be used, which are relative
to the end of the list rather than the start of the list. Indices that are out of bounds saturate to those
bounds. Some examples:

disc list int x = [7, 8, 3, 5, 9];

x[2:4] // [3, 5] Slice that includes third and fourth elements.
x[2:7] // [3, 5, 9] Slice that excludes the first two elements.
x[1:] // [8, 3, 5, 9] Slice that excludes the first element.

x[:-11 // [7, 8, 3, 5] Slice that excludes the last element.

x[:] // [7, 8, 3, 5, 9] Slice includes all elements (is equal to 'x').

The first slice takes the third (index 2) and fourth (index 3) elements. The begin index (2) is thus
included, the end index (4) is not. The second slice starts at the same index, but extends to the sixth
element (index 7). Since there are only five elements, the index is saturated (or clamped) to the end
of the list. The results is that all but the first two elements are included. The third slice excludes the
first element (index 0), by starting at index 1. It omits the end index, meaning that the entire
remainder of the list is kept, and only the first element is not included. The fourth slice begins at the
beginning of the list, as the begin index is omitted. It continues until the last element of list, which it
excludes. It thus excludes a single element from the end of the list. The fifth slice includes all
elements, as both the begin and end index are omitted. The slice is thus identical to the list in x. The
following figure graphically represents the slices:

x[:] x[2:4] x[2:7]
R
718 3]5]|9
R —

x[:-1] x[1:]

Lists can be combined into new lists. They are essentially 'glued' together. This is called
concatenation. This can also be used to add a single element to the front or back of the list. For
instance:


https://en.wikipedia.org/wiki/Saturation_arithmetic

(7, 8 31 +1[5 91 //17,8, 3,5, 9]
[51 + [7, 8, 3] /7 15,7, 8, 3]
[7, 8, 3] + [5] /7 11, 8, 3, 5]

Several other standard operators and functions are available to work with lists, including the

following:
[1, 8, 31 = [1, 3, 8] // false (equality test)
6 in [1, 8, 3] // false (element test)
114n [1, 8, 3] // true
empty([1, 2]) // false (empty test)
size([1, 5, 3, 31) // 4 (count elements)
del([7, 8, 9, 101, 2) // [7, 8, 10] (removed value at index '2')
pop([1, 5, 31) // (1, [5, 3]) (first element and remainder)

2.5.11. Bounded lists and arrays

CIF can only represent lists (type list) with at most 2,147,483,647 (= 2*' - 1) elements. Using lists
with more elements results in the CIF model being invalid, and leads to runtime errors. For
instance, consider the following CIF specification:

automaton a:
disc list int x;

location:
initial;
edge do x := x + [1];
end

Each time the edge is taken, another element is added to list x. As soon as an attempt is made to add
the 2,147,483,648th element, a runtime error occurs.

It is possible to explicitly restrict the number of elements that may be contained in a list:
disc list[3..7] int vy; // List with at least 3 and at most 7 elements.

Variable y can only have lists as its value that have at least 3 and at most 7 elements. Assigning a list
with any other number of elements is not allowed. Lists with size restrictions are called bounded
lists. They can also be called size restricted lists or ranged lists. The default value for y is [0, 0, 0].
That is, the default value has the least amount of elements that is allowed by the bounded list, and
the default value (0) of the element type (int).



Lists with a fixed length are called arrays:

disc list[5..5] int a; // List with at least 5 and at most 5 elements.
disc list[5] int b; // Shorter but equivalent array notation.

By giving a bounded list the same lower and upper bound, the bounded list has a fixed number of
elements, and can be called an array. Arrays also have a shorter and more convenient notation,
where the number of elements is only given once. Both notations for arrays are equivalent.

Both bounded lists and arrays support the same operations as regular lists, and can be modified
(assigned) the same way as regular lists, as long as their size restrictions are not violated.

2.5.12. Sets

A set is an unordered collection of values (called elements) of a same type. Each element value
either exists in a set, or it does not exist in a set. Each element value is unique, as duplicate
elements are silently discarded. Consider the following:

disc set int x1 = {3, 7, 8};

disc set int x2 = {8, 3, 7}; // Order irrelevant (same as 'x1').
disc set int x3 = {8, 3, 7, 3}; // Duplicates ignored (same as 'x2').
disc set int x4 = {}; // Empty set.

Variable x1 has a set of integers as its value. In this case, its initial value is a literal set with three
integer elements. As sets are unordered collections of elements, {3, 7, 8} is the same set as {8, 3,
7}, and thus variables x1 and x2 have the same initial values. Since elements in a set are unique, set
{8, 3, 7}isequal totheset {8, 3, 7, 3}, and thus variables x2 and x3 have the same initial values.
For readability, elements in a set are normally written in increasing order, for example {3, 7, 8}.
Variable x4 has an empty set as initial value, which is also the default initial value for sets.

The union of two sets results in a set that contains the combined elements of both sets. You can
think of the resulting set containing the elements that are in the one set or in the other set (or in
both of them). Since sets never contain duplicates, common elements are present only once in the
resulting set:

{1, 2, 3} or {2, 3, 4} // {1, 2, 3, 4}
{1, 2, 3} or {2, 3, 4} // {1, 2, 4, 3}

Since sets are unordered, both answers are possible, and represent the same set. Since the order is
irrelevant, there are 24 different ways to represent that same set. In the remainder of this lesson,
we’ll use increasing order, for readability.

The intersection of two sets results in a set that contains the elements that are present in both sets.
You can think of the resulting set containing the elements that are in the one set and in the other set.
In other words, the result contains the elements common to both sets:



{1, 2, 3} and {2, 3, 4} // {2, 3}
{1, 2} and {3, 4} // {} (no elements in common)

The difference of two sets results in a set that contains the elements of the first set that are not
present in the second set. You can think of the resulting set containing the elements of the first set,
with the elements of the second set subtracted or removed from it:

{11 2: 3} B {21 3: 4} // {1}
{11 21 3} - {4I 5} // {11 2! 3}
{11 2! 3} B {11 2! 31 4} // {}

Several other standard operators and functions are available to work with sets, including the
following:

{1, 8, 3} = {1, 3, 8} // true (equality, ignores order of elements)
6 in {1, 8, 3} // false (element test)

11in {1, 8, 3} // true

{1, 3} sub {1, 3} // true (subset check)

{1, 3} sub {1, 3, 5} // true

{1, 3} sub {1, 4} // false

{1, 3} sub {1, 4, 5} // false

empty({1, 2}) // false (empty test)

size({1, 5, 3, 3}) // 3 (count elements, duplicates ignored)

2.5.13. Dictionaries

A dictionary is an unordered collection of keys and associated values. A key with its associated
value is called a key/value pair. Consider the following:

disc dict(string:int) age = {"eve": 32, "john": 34, "adam": 25};

Variable age has as value a dictionary consisting of pairs of strings (the keys) and integers (the
values). In this example, each string represents a person’s name, and each integer represents the
age of that person. Variable age is initialized with a literal dictionary, containing three key/value
pairs. You can think of the dictionary as storing the information that eve is 32 years old, or that the
age of eve is 32.

As with sets, dictionaries are unordered. The order of the key/value pairs is irrelevant, {"eve": 32,
"adam": 25} is the same dictionary as {"adam": 25, "eve": 32}. For readability, key/value pairs of
dictionary literals are normally written in increasing order of their keys. {"adam": 25, "eve": 32}is

thus preferred over {"eve": 32, "adam": 25}, as adam goes before eve in a phone book.



Dictionary literals are often written using multiple lines, to get two 'columns' for the keys and
values, which can improve readability:

disc dict(string:int) age = {"eve": 32,
"john": 34,
"adam": 25};

The default value for dictionary types, is an empty dictionary. The following two variables thus
have the same initial value:

disc dict(string:int) x1 = {}; // Explicitly initialized as empty.
disc dict(string:int) x2; // Implicitly initialized as empty.

Every key of a dictionary is unique, but they may be associated with the same value. For the above
example with ages, the names (keys) are used to uniquely identify people, but multiple people may
have the same age (values). It is not allowed to have the same key twice, in a dictionary literal,
regardless of whether they map to the same value or to different values:

disc dict(int:int) x1 = {1:
disc dict(int:int) x2 = {1:

, 1: 2}; // Invalid due to duplicate key '1'.

2
2, 1: 3}; // Invalid due to duplicate key '1'.

The values of a dictionary can be obtained by projection on that dictionary, using the keys:

disc dict(string:int) age = {"adam": 25, "eve": 32, "john": 34};

disc int i;

edge ... do i := age["adam"]; // 'i' becomes '25'

edge ... do i := age["eve"]; // 'i' becomes '32'

edge ... do i := age["carl"]; // error (there is no "carl" key)

Projection using a key that exists in the dictionary, results in the associated value. Projection using a
key that does not exist in the dictionary, leads to a runtime error.

It is possible to modify single elements of a dictionary, as follows:

disc dict(string:int) age = {"adam": 25, "eve": 32, "john": 34};

33; // Changes eve's age.
47; // Adds a new key/value pair.

edge ... do age["eve"] :
edge ... do age["bob"] :

The age of eve is changed from 32 to 33. The age is thus replaced by a new age. The age of bob is set
to 47. Since there was no key/value pair for that person in the dictionary, a new key/value pair is

added. After the updates of both edges, the value of variable age is {"adam": 25, "bob": 47, "eve":
33, "john": 34}



Several other standard operators and functions are available to work with dictionaries, including
the following:

{"a": 1, "b": 2} = {"b": 2, "a": 1} // true (equality check)
{uau: 1' nbn } = {n n: 1’ "b": 3} // false

"a" in {"a": 1, "b": 2} // true (key existence check)

"e" din {"a": 1, "b": 2} // false

{Il II. , llbll: 2} + {llb": 3’ "C": 4} // {ll ". rI, llbll: 3 n II. 4} (add/overwr_lte
pa1rs)

{"a": 1, "b": 2} - {"b": 3, "c": 4} // {"a": 1} (removal based on keys)
{"a": 1, "b": 2} - {"b", "c"} // {"a": 1}
{"a" // {"a

llbll: 2} _ [llbll n II] n ll: rl}
empty({"a": 1, "b": 2}) // false (empty check)
size({"a": 1, "b": 2}) // 2 (count pairs)

2.5.14. Combining values

Values of different types can usually be arbitrarily combined. For instance, consider the following
example:

disc dict(int;tuple(real pos, weight)) boxes = {1: (0.0, 2.5),
2: (3.0, 1.7),
3: (4.0, 3.9};

Variable boxes stores data about multiple boxes, in a dictionary with unique identification numbers
(1, 2, and 3) used as keys. For each box, the position (pos) and weight are stored as a tuple. Initially,
there are three boxes. The first box has identification number 1, position 0.0, and weight 2.5. The
second box has identification number 2, position 3.0, and weight 1.7. Also consider the following
example, where the data of that variable is manipulated:

edge ... do boxes[1][weight] := 3.5;
edge ... do boxes[2][pos] := boxes[2][pos] + 1;
edge ... do boxes[4] := (1.0, 0.8);

The first edge changes the weight of the box 1 (the box with identification number 1), from 2.5 to
3.5. The second edge increases the position (pos) of box 2 from 3.0 to 4.0. The third edge adds data
for a new box with identification number 4.

2.5.15. If and switch expressions

In some models one wants to produce different values under different circumstances. Or one needs
to convert from one type to another type. if and switch expressions provide means to do this in a



concise manner. This lesson provides an introduction to both these expressions. For more practical
examples, see the simulation model of the synthesis-based engineering example elsewhere in the
documentation.

If expression

Consider the following expression:

if x> 0: 1 elif x < 0: -1 else 0 end

This expression takes a real number x and produces its sign. The if expression is used to detect the
different situations, and to produce the correct result in each of those situations.

An if expression always consist of the if and the else parts. In between can optionally be any

number of elif parts:

if x > 0: 1 elif x < 0: -1 else @ end
if x > 0: 1 else 0 end
if x > 0: 1 elif x < -10: -2 elif x < 0: -1 else 0 end

If the 'guard predicate' of an if or elif (the expression before the :) holds, that alternative is
chosen. In the following example, if x has a value of 2 and y a value of 3, then value -2.8 is
produced:

if x>0andy=2:1.5elif x>0andy !=2or x < 0: -2.8 else 0.1 end

The if and elif alternatives are considered in order. The first alternative that has a guard that
holds determines what value is produced by the if expression. Consider the following if
expression:

if x >0: 1.5 elif x > 0: -2.8 else 0.1 end
For any value x > 0, this if expression produces 1.5. It will never produce -2.8, as the if part is

considered before the elif part.

Switch expression

Similar to an if expression, a switch expression can be used to produce different values under
different circumstances. Consider the following partial CIF model:

enum mode = OFF, ON1, ON2, ON3, DISCONNECTED;


https://en.wikipedia.org/wiki/Signum_function

automaton rotary_switch:
disc mode m = OFF;

end

alg int speed = switch rotary_switch.m:

case ON1: 5

case ON2: 10

case ON3: 15

else 0
end;

end

This switch expression takes the operation mode rotary_switch.m and provides the speed
corresponding to that mode. If the value of m matches one of the cases, the switch expression will
produce the corresponding value. For example, if m has value ON2, this switch expression produces
10. If none of the cases match, the value of the else case is taken. For example, if m has value
DISCONNECTED, this switch expression produces 0. Note that multiple values can be captured by the
else case, i.e., you do not have to cover each possible value with a separate case.

One can use different kinds of types as long as the types of the cases match the type of the switch
expression. In the example above, mis of type mode, which is an enumeration. Hence all cases should
be of type mode as well. Below is an example using a ranged integer in the switch expression:

alg int[@,2] num_products;

alg string display_text = switch num_products:
case 0: "There are no products in the buffer."
case 1: "There 1is one product in the buffer."
case 2: "There are two products in the buffer."
end;

One can also use an automaton as a variable of the switch expression, where the cases have to be
locations of that automaton:

automaton controller:
location accelerate: ...
location decelerate: ...
location steady: ...

end

alg int acceleration = switch controller:
case accelerate: 5
case decelerate: -3
case steady: 0
end;



Note that in this switch expression we omitted the else case, as the three cases together already
cover all possible locations of automaton controller.

It is possible to rewrite a switch expression into an if expression (the other way around is not
always possible). This rewrite can be automated using a CIF to CIF transformation.

2.6. Scalable solutions and reuse (1/2)

2.6.1. Constants

Through the use of constants, fixed values can be given a name. Using constants, it is easy to change
certain fixed values. If the constant is used consistently throughout the model, the value needs to be
changed only in one place. Constants can thus make it easier to keep the model consistent.

Consider the following CIF specification:

const int STEP = 2;
const int TARGET = 100;

automaton movement:
disc int position = 0;
event move;

location:
initial;
edge move when position < TARGET do position := position + STEP;
end

In this example, the movement automaton keeps track of the position of an object. The object starts at
position 0. It can move until it reaches its target position. The target position is 100. Rather than using
position < 100 as guard, the value 100 is stored in a constant named TARGET. The constant can then
be used instead the value 100. Similarly, the step size of the object is stored in a constant named
STEP.

Constants have a name, which by contention is usually written using upper case letters. Using a
constant instead of a fixed value makes it more clear what that value represents. For instance, by
using position < TARGET rather than position < 100, the intention of the guard condition is more
clear. Using a constant can thus enhance readability.

Another benefit of constants, is that they can be used multiple times in the same model:

const int STEP = 2;
const int TARGET = 100;

automaton movement:
disc int position = 0;
event forward, backward;



location:

initial;
edge forward when position < TARGET do position := position + STEP;
edge backward when position > 0 do position := position - STEP;

end

In this modified example it is possible for the object to perform forward as well as backward
movements. The step size is the same for both movements, making it possible to use the STEP
constant in the updates of both edges. Since a constant is used, the speed of both movements can be
changed by changing the value of the constant. Without using a constant, the speed would have to
be changed separately for each edge.

Constants are not limited to integer values. Consider the following example, where a more complex
value is used:

enum ProductType = A, B, C;
const dict(ProductType:real) DURATION = {A: 3.5, B: 5.7, C: 0.8};

This example declares a ProductType enumeration, with three different product types: A, B, and C.
The DURATION constant indicates for each product type, how long it takes to produce a product of
that type. Products of type A can be produced in 3.5 hours, products of type B in 5.7 hours, etc. To get
the production duration of products of type (, expression DURATION[C] can be used. For more
information, see the lessons on enumerations and dictionaries.

2.6.2. Algebraic variables

Consider a conveyor belt with a product on it:

CEEENC

0 1314 18

The product starts at the left side, at position 0. There is a sensor that can detect the product
between positions 13 and 14. The product exits the conveyor at position 18. The following CIF
specification models the conveyor, product, and sensor:

automaton conveyor:
disc real position = 0.0;
event move;

const real width = 6;
alg bool sensor = position + width >= 13 and position <= 14;

location:
initial;
edge move when position < 18 do position := position + 0.1;



end

The conveyor automaton models the conveyor, with a product on it. The product is modeled by
means of the position of the left side of the product, relative to the left side of the conveyor. As the
conveyor starts to move, the product moves as well, and its position on the conveyor is updated. The
product moves in steps of 0.1.

The width of the product is 6. The sensor is on whenever the product, which spans from position to
position + width, is within the sensor range, which spans from 13 to 14. An algebraic variable
named sensor is used here, to represent the value of the sensor.

An algebraic variable is a variable whose value is determined by its definition. For the sensor
variable, its value is determined from a calculation involving variable position and constant width.
Unlike discrete variables, algebraic variables can not be assigned a new value. The value of
algebraic variable sensor changes automatically as the value of discrete variable position changes.
The value of algebraic variable sensor is true whenever the product is over the sensor, and it is
false otherwise.

If we had modeled the value of the sensor as a discrete variable, we would have had to update the
variable for every edge where the value of variable position is updated. In this example, that is
only one edge. However, if the variable would have been updated on multiple edges, the sensor
value would also have to be updated for all those edges. Furthermore, when adding another edge
that updates the position variable, the edge needs to be adapted to also update the sensor discrete
variable, which can easily be forgotten. Using an algebraic variable, the value computation needs to
be specified only once, and no changes to its value are needed, as the value always remains
consistent with its definition.

Algebraic variables can be used to give an expression (computations) a name, similar to how
constants can be used to give fixed values a name. The benefits of using an algebraic variable are
similar to the benefits of using constants. Both can be used to improve readability, and to make it
easier to consistently change the model.

Algebraic variables can also be used as an abstraction. Consider the following extension of the
specification:

automaton light:
event turn_on, turn_off;

location off:

initial;

edge turn_on when conveyor.sensor goto on;
location on:

edge turn_off when not conveyor.sensor goto off;
end

The idea is to have a light turn on when a product is detected by the sensor, and have it turn off
when the sensor no longer detects the product. The algebraic variable sensor is used in the guard



conditions of the 1ight automaton, to determine when the light should be turned on or off.

In the example, the 1ight automaton only uses the sensor variable from automaton conveyor. It does
not matter how the value of that variable is defined. Currently, it is defined in terms of variable
position and constant width. However, if the conveyor automaton were modeled differently, the
expression that defines the value of the algebraic variable could be changed, without the need to
change the use of the variable in automaton light.

2.6.3. Algebraic variables and equations

Consider the following CIF specification:

automaton car:
event start, stop, breakdown, start_repair, repaired;

alg bool can_drive = idle or moving;

location idle:
initial;
edge start goto moving;

location moving:
edge stop goto idle;
edge breakdown goto broken;

location broken:
edge start_repair goto repairing;

location repairing:
edge repaired goto idle;
end

The car is initially idle. Once you start driving, the car is moving. Once you stop driving, the car is
idle again. While moving it is possible for a breakdown to occur, meaning the car is broken. Once a
mechanic starts the repair (start_repair), the mechanic is repairing the car. Once it is repaired, the
car is idle, and you can start driving it again, etc.

Algebraic variable can_drive indicates whether you can currently drive the car. As the value
calculation indicates, the car can be driven whenever it is idle or moving. That is, it can’t be driven if
the car is broken or a mechanic is repairing it.

In the example above, the value of the algebraic variable is defined with the declaration, as was
already explained in the lesson that introduced algebraic variables. However, it also possible to
specify the value separately, using an equation:

automaton car:
event start, stop, breakdown, start_repair, repaired;

alg bool can_drive;



equation can_drive = idle or moving;

// Locations omitted for brevity.
end

This allows for separation of variable declarations and equations. Both variants have the same
algebraic variable with the same value. An equation of an algebraic variable must be placed in the
same component as where the algebraic variable is declared. In the example above, the equation
for algebraic variable can_drive must be placed in automaton car, as that is where the algebraic
variable is declared.

For algebraic variables declared in automata, it is also possible to specify the value using an
equation per location of the automaton:

automaton car:
event start, stop, breakdown, start_repair, repaired;

alg bool can_drive;
location idle:

initial;
equation can_drive = true;

edge start goto moving;

location moving:
equation can_drive = true;

edge stop goto idle;
edge breakdown goto broken;

location broken:
equation can_drive = false;

edge start_repair goto repairing;

location repairing:
equation can_drive = false;

edge repaired goto idle;
end

Every algebraic variable must have a unique value in every situation. Algebraic variables must thus
have a value with their declaration, a single equation in the same component, or an equation in
every location of the automaton. For every algebraic variable, one of the three variants must be
chosen. It is allowed to choose a different variant for different algebraic variables, but it is not
allowed to use multiple variants for the same algebraic variable.



Which variant fits best for a specific algebraic variable, depends on the situation. One of the
benefits of using an equation per location, is that the equations are checked for completeness. If
you add a new location, you must add an equation to that location as well, as otherwise the model
is invalid (incomplete). This means you can’t forget to specify the value of the algebraic variable for
that new location. If you use a value with the declaration or a single equation in the component,
you might forget to update the value for the changes you made to the automaton.

2.6.4. Type declarations

Consider this slightly modified version of an example from the lesson on constants:

enum ProductType = A, B, C;

C: 0.8};
C: 3.9};

I

const dict(ProductType:real) M1_DURATION = {A: 3.5, B: 5.7,
const dict(ProductType:real) M2_DURATION = {A: 1.8, B: 4.2

I

This example declares a ProductType enumeration, with three different product types: A, B, and C.
The M1_DURATION constant indicates for each product type, how long it takes to produce a product of
that type, on machine 1. Products of type A can be produced in 3.5 hours, products of type B in 5.7
hours, etc. Constant M2_DURATION is similar, but for machine 2.

The type of both constants is the same. To avoid having to repeat complex types in multiple places,
a type declaration can be used:

enum ProductType = A, B, C;
type Durations = dict(ProductType:real)

const Durations M1_DURATION =
const Durations M2 _DURATION =

{A: 3.5, B: 5.7, C: 0.8};
{A: 1.8, B s

5.
A: 1.8, B: 4.2, C: 3.9

A type declaration with name Durations is introduced, and Durations can then be used wherever a
type is expected, instead of dict(ProductType:real). In the example above, Durations is used as type
of the two constants. The original specification and the one with the type declaration have the same
constants, with effectively the same type. That is, in both specification the value of constant
M1_DURATION is a dictionary with three key/value pairs.

Type declarations can be used to give a type a name, similar to how constants can be used to give
fixed values a name, and algebraic variables can be used to give computations a name. The benefits
are also similar, as type declarations can be used to make specifications more concise, to increase
readability, and to make it easier to consistently change types throughout the specification.

2.7. Time

2.7.1. Timing

So far, the tutorial has only used discrete event models as examples, which are all untimed. This
lesson introduces the concept of timing.



In CIF, time starts at zero (0.0). Time can progress continuously. That is, after one unit of time has
passed, the model time is 1.0. After an additional one and a half time units have passed, the model
time is 2.5, etc. By default, one time unit corresponds to one second. However, you can decide to
use another unit, and tools such as the simulator can be configured to speed up or slow down the
simulation accordingly.

Variable time

A variable named time is always available in every specification. The variable holds the current
absolute model time as its value, and can be used throughout the model. Initially, time and thus the
value of variable time start at zero (0.0). As time progresses, the value of variable time is
automatically updated to ensure it properly represents the current time of the system.

In this lesson, absolute time will be used. In most models, it is easier to use relative time. This can
be achieved with continuous variables, discussed in the next lesson.

Timed guards

Consider the following CIF specification:

event push, release;

automaton user:
location start1:
initial;
edge push when time >= 1.5 goto stop1;

location stopl:
edge release when time >= 2.3 goto start2;

location start2:
edge push when time >= 2.4 goto stop2;

location stop2:
edge release when time >= 7.6 goto done;

location done;
end

The push and release events represent pushing and releasing of a button respectively. The actual
behavior of the button itself is omitted. The specification does model the behavior of a user.
Initially, the user is in location start1, and no time has passed. The edge with the push event is not
yet enabled, as the guard is not satisfied. As soon as one and a half time units have passed, the
guard condition becomes satisfied, and the push event becomes enabled. This edge models that the
user starts to push the button after 1.5 time units. The user then waits for another 0.8 (2.3 - 1.5)
time units, before releasing the button (stop pushing it). After waiting another 0.1 (2.4 - 2.3) time
unit, the user pushes the button again. Finally, after waiting 5.2 (7.6 - 2.4) time units, the user



releases the button one last time. In the done location, the push and release events are never enabled
(no edges for those events), and thus the user never pushes or releases the button again. No other
events are enabled, so time keeps progressing forever, without any events happening.

Time transitions

The state space of the above specification is:

push 0.8 release 0.1 push 5.2 release
— pushl, 00 ——— » pushl, 15 —— > releasel, 15 ——> releasel, 23 ———> push2,23 —— 5 push2, 24 — > release?, 24 —— > release?, 76 —— > done, 7.6 — o0

The states are labeled with the names of the current locations of automaton user and the current
values of variable time. The transitions labeled with event names are event transitions. The other
transitions are time transitions, which are labeled with the duration of the time transitions, i.e. the
number of time units that passes. At the end of the state space, a time transition of infinite duration
is shown, to indicate that time can progress forever.

The current locations of automata can not change as time passes as the result of taking a time
transition. The only way for the current locations to change, is as the result of taking an edge as
part of an event transition.

Urgency

By default, all events in CIF are urgent. Events being urgent means that edges are taken as soon as
possible. In other words, event transitions take priority over time transitions. Time can only
progress if no event transitions are possible. For further details on urgency, see the future urgency
lesson.

Numeric time

In the above example, guard time >= 1.5 is used. You might wonder why the guard is not time =
1.5, as the intention is that user pushes the button after exactly 1.5 time units, and not after 1.6 or
1.7 time units. The main reason is that the simulator uses finite precision in its numeric
calculations to find the moment in time that the edge becomes enabled. The answer also has finite
precision. It is often not exactly at 1.5 time units, but is slightly after it, say at time 1.50000000000001.
If you use time = 1.5 as guard instead of time >= 1.5, the simulator will most likely miss the change
in enabledness of the edge, and will never enable the event.

2.7.2. Continuous variables

In the lesson that introduced timing, variable time was used. Variable time uses absolute model
time, i.e. the total amount of time that has passed since the start of the simulation. It is usually
easier to use relative model time, i.e. a certain amount of time passes after a certain event. This is
where continuous variables are ideal. A continuous variable is a variable that changes value
automatically, as time progresses. Consider the following CIF specification:

automaton machine:
event start, finished;
cont t = @0 der 1;



location idle:
initial;
edge start do t := @ goto producing;

location producing:
edge finished when t >= 3 goto idle;
end

This specification models a machine that is initially idle. The machine can start to produce a
product. After a while, it is done producing. Due to having finished the product, it becomes idle
again, until it is starts to product the next product.

Continuous variable t is declared to initially have value 0. Its derivative is 1, meaning that every
unit of time that passes, the value of t increases by 1. Every time the start event happens, the value
of continuous variable t is reset to 0 using an assignment. As a result of this reset, t will be @ when
the automaton enters the producing location. The edge for the finished event indicates that the
event can only happen when t >= 3 holds. This condition will hold after three time units. This
means that automaton machine remains in the producing location for three time units, before going
to the idle location. It will thus always take three units after entering the producing location, before
the guard becomes enabled, and the finished event can take place. The state space is as follows:

start 3.0 finished start 3.0 finished start 3.0 finished
—» i,00,00 —> p 0000 —w—» p 30,30 ——» 30,30 —> p3000 —— p6030 —— 6030 —> p60,00 —> p90,30 —> 9030 —-
The states are labeled with the first letters of the names of the current locations of automaton
machine and the current values of variables time and t.

Continuous variables always have real values. Similar to discrete variables, if their initial value is
not specified, it is 0.0:

cont t der 1; // Initial value is 0.0.

The derivative of a continuous variable can be used as a variable as well. The derivative of
continuous variable t is t'. A derivative is read only; it can not be assigned. Similar to algebraic
variables, it is always equal to its definition. In the case of variable t, its derivative is always 1. The
values of variables time, t, and t' as time progresses are:



=]

8
7
6
5
4
3
2
1
0 | | | : | | | | |
0 1 2 3 4 5 6 7 8 9
time(time) t(time) t'(time)

2.7.3. Continuous variables and equations
Consider the following CIF specification:
automaton person:

event turn;
cont t = @ der 1;

location:
initial;
edge turn when t > 10 do t := 0.0;
end

This specification models a person walking back and forth. Every time that the person has walked 10
time units, (s)he will turn around, walking in the other direction.

In the example above, the derivative of the continuous variable is defined with the declaration, as
was already explained in the lesson that introduced continuous variables. However, it also possible
to specify the derivative separately, using an equation:

automaton person:
event turn;
cont t = 0; // Declaration specifies only the initial value.

equation t' = 1; // Derivative specified using separate equation.
location:
initial;
edge turn when t > 10 do t := 0.0;
end

This allows for separation of variable declarations and equations. Both variants have the same



continuous variable with the same derivative. An equation of a derivative of a continuous variable
must be placed in the same component as where the continuous variable is declared. In the
example above, the equation for t' must be placed in automaton person, as that is where t is
declared.

We could extend this specification to keep track of the direction that the person is moving:

automaton person:
event turn;
cont t = 0 der 1;

location away:
initial;
edge turn when t > 10 do t :

0.0 goto back;

location back:
edge turn when t > 10 do t :

0.0 goto away;
end

For continuous variables declared in automata, it is also possible to specify the derivative using an
equation per location of the automaton. This allows us to keep track of the exact position of the
person:

automaton person:
event turn;
cont pos = 0;

location away:
initial;
equation pos' = 1;
edge turn when pos > 10 goto back;

location back:
equation pos' = -2;
edge turn when pos < @ goto away;
end

Here, the continuous variable t has been renamed to pos, to make it more clear that it indicates the
position of the person. As long as the person is moving away, the derivative of pos is 1, and the
person moves away, one place every time unit. When the person reaches position 10, the position is
not reset to zero. Instead, only the location is changed to the back location. In that location, the
derivative of pos is -2. This means that every time unit, the position decreases by 2. That is, the
person back to the original position, but at twice the speed. The values of variables time, pos, and
pos' as time progresses are:



0 5 10 15 20 25 30 35 40
time(time) pos(time) pos'(time)

As with algebraic variables, every continuous variable must have a unique derivative in every
situation. Continuous variables must thus have a derivative with their declaration, a single
equation in the same component, or an equation in every location of the automaton. For every
continuous variable, one of the three variants must be chosen. It is allowed to choose a different
variant for different continuous variables, but it is not allowed to use multiple variants for the
same continuous variable.

2.7.4. Equations

Consider the following non-linear system:

Qi

Qo

Variable V models the water volume of a tank. The water volume of the tank changes based on the
incoming flow of water Qi and outgoing flow of water Qo. The tank can be modeled using the
following CIF specification:

cont V = 5 der Qi - Qo;
alg real Qi = 1;
alg real Qo = sqrt(V);

Initially, the tank is filled with 5 liters of water. The incoming flow is constant at 1 liter per second.
The outgoing flow increases as the water volume of the tank increases.

By separating the declarations of the three variables from their equations, the specification
becomes more readable:


https://en.wikipedia.org/wiki/Nonlinear_system

cont V = 5;
alg real Qi;
alg real Qo;

equation V' = Qi - Qo;
equation Qi = 1;
equation Qo = sqrt(V);

The values of the variables as time passes are shown in the following figure:

ime

— i —— Qo —V Vv

2.7.5. Variables overview

CIF features different kinds of variables, that have different functionality. Each is better suited for a
particular purpose. The following table gives an overview:

Kind of variable Can be assigned Can change as time
progresses
Discrete variable yes no
Algebraic variable no yes
Continuous variable yes yes
Derivative of a continuous no yes
variable
Input variable depends depends

Discrete variables can only change value when given an explicit new value by means of an
assignment. They don’t change automatically as time progresses.



Algebraic variables can’t be assigned. Instead, their values depend on their declarations or
equation(s). If the computations that result in their values depend on a variable that can change
value as time progresses, then so can the values of the algebraic variables. Algebraic variables are
used as named shorthand notations for computations, for readability, reuse, consistency, and
abstraction.

Continuous variables automatically change value as time progresses, as specified by their
derivatives. They can also be assigned new values, from which they then automatically change
again, based on the current values of their derivatives.

The derivatives of the continuous variables can be seen as variables themselves. Their values
depend on their declaration or equation(s). If the computations that result in their values depend
on a variable that can change value as time progresses, then so can the values of the derivatives.

Input variables are introduced in a later lesson. Different tools may use different approaches to
connect input variables to the environment of the specification, which impacts how values are
provided for the input variables. Whether input variables can change value by assignment or can
change as time progresses therefore also depends on how tools work with them. The CIF language
allows assigning them via SVG input mappings with updates, which are explained in a later lesson.

2.7.6. Urgency

In CIF, urgency indicates whether or not time may progress. CIF has three forms of urgency: event
urgency, location urgency, and edge urgency. Edge urgency should be avoided, and is not explained
here.

Event urgency

By default, all events in CIF are urgent. Events being urgent means that edges are taken as soon as
possible. In other words, event transitions take priority over time transitions. Time can only
progress if no event transitions are possible. It is not possible to make events non-urgent in a CIF
model, but specific tools may allow making events non-urgent.

Location urgency

Consider the following CIF specification:

automaton use_case:
location first:
initial;
edge tau goto second;

location second:
edge tau goto done;

location done;



end

This automaton represents a use case, which goes from one location to the next. The state space is:

tau tau
—»  first, 0.0 ———» second, 0.0 ——» done, 0.0 —» ¢

The states are labeled with the names of the current locations of automaton use case and the
current values of variable time. At the end of the use case, no events are possible, and thus time can
progress infinitely. To force that in location done no time can progress, the location can be made
urgent:

automaton use_case:
location first:
initial;
edge tau goto second;

location second:
edge tau goto done;

location done:
urgent; // Location is now urgent.
end

The resulting state space is:

tau tau
—» fyrst, 0.0 > second, 0.0 ———> done, 0.0

2.7.7. Deadlock and livelock

This lesson explains the concepts of deadlock and livelock.

Deadlock

If no event transitions are possible, and also no time transitions are possible (time may not
progress), then no transitions are possible. This is called deadlock. No behavior is possible, or will
ever become possible. As an example, consider the following CIF specification:

automaton use_case:
location wait3:
initial;
urgent,
edge tau when time > 3 goto done;

location done;



end

Location wait3 is the initial location. Initially, time is zero. Time can not progress, as the location is
urgent. Since the guard of the edge also does not hold, event tau is also not possible. No transitions
are possible, and the specification is in deadlock.

Livelock

As long as an event is possible, no time may pass. If by mistake always an event is possible, this
prevents all passage of time. Consider the following CIF specification:

automaton car:
event increase, decrease, arrived;
disc real speed = 0;
cont pos = @ der speed;

location underway:
initial;
edge increase when speed < 100 do speed :
edge decrease when speed > @ do speed :
edge arrived when pos = 850 goto done;

speed + 1;
speed - 1;

location done;
end

This specification models a car that can increase and decrease its speed, so that it is at least @ and at
most 100. It keeps track of its position (continuous variable pos) that increases more quickly as the
speed increases. When position 850 is reached, the car has arrived and is done.

The car will be increasing and decreasing it speed, using the increase and decrease events. As
always at least one of them is enabled at any moment, time can never progress, and pos remains
zero. This effect is called livelock. While behavior is still possible, the model does not truly progress
with useful behavior. The model gets 'stuck’ repeating one or a few events.

2.8. Channel communication

2.8.1. Channels

Consider the following figure of a producer and two consumers, where rectangles represent entities
and the arrows represent the data that is communicated:

providel consumerl

producer

provide2 consumerz2



The producer creates products, identified by a unique identification number. Each product
produced by the producer, is provided either to the first or to the second consumer. Consider the
following CIF specification:

event providel, provide?2;

automaton producer:
disc int nr = 0;

location:
initial;
edge providel, provide2 do nr := nr + 1;
end

automaton consumer1:
disc list int nrs;

location:
initial;
edge providel do nrs := nrs + [producer.nr];
end

automaton consumer?:
disc list int nrs;

location:
initial;
edge provide2 do nrs := nrs + [producer.nr];
end

The producer keeps track of the identification number (variable nr) of the current product, and
provides products to either the first consumer (event providel) or the second consumer (provide2).
Both consumers have a list of their products (variable nrs in the consumer automata). Initially, the
consumers don’t have a product, and the list is empty. When a consumer gets a new product, it
looks up the identification number of the product at the producer, and stores it locally. The
producer then moves on to the next product, by increasing its current identification number.

We can identify two problems in this model.

The first problem is that we need two events in order for the producer to provide products to either
the one consumer or the other consumer. If we used only one event, both consumers would need to
use that event, have the event in their alphabet, and would thus have to simultaneously participate
in the synchronization. A consequence of having an event per consumer, is that the producer
automaton has both events on its edge. Adding a third consumer entails having to add another
event, as well as having to modify the edge of the producer automaton. This is not a nice scalable
solution.

The second problem is that the consumer refers directly to the nr variable of the producer
automaton. This introduces a very tight coupling between the producer and the consumers. It



exposes the nr variable of the producer to the consumers, making it more difficult to change the
producer without changing the consumers.

Both these problems can be solved by using channels. Channels are a special form of events, that
can be used to communicate or transmit data from a sender to a receiver. In our example, data that
is communicated are the identification numbers of the products, the producer is the sender, and
the consumers are the receivers.

Channels require one or more potential senders, and one or more potential receivers. Automata
cannot be both sender and receiver for a single channel. They may however be a sender for one
channel, and a receiver for another channel. For every transition, exactly one of the senders and
exactly one of the receivers participate. The sender sends a value, and the receiver receives that
value. This type of communication is often called channel communication or point-to-point
communication, as the data is communicated from one point (the sender) to another point (the
receiver).

Multiple automata that synchronize over the same event perform a transition together. Similarly, a
sender and receiver that together perform a channel communication, perform a transition
together. In both cases, all automata involved take their respective edges synchronously
(simultaneously).

Channels are ideally suited for modeling product flows, or more generally the movement of
physical entities through a system. Physical objects usually don’t duplicate themselves or
spontaneously stop to exist. This fits nicely with channels, where data is communicated or passed
along from exactly one sender to one receiver. In our example, product produced by the producer
are physically provided to one of the consumers.

The following CIF specification models the above example using channels:

event int provide;

automaton producer:
disc int nr = 0;

location:
initial;
edge provide!nr do nr :=nr + 1;
end

automaton consumer1:
disc list int nrs;

location:
initial;
edge provide? do nrs := nrs + [?];
end

automaton consumer?:
disc list int nrs;



location:
initial;
edge provide? do nrs := nrs + [?];
end

The providel and provide2 events have been replaced by a single channel named provide. Channels
are declared similar to events, but have a data type that indicates the type of values that are
communicated over the channel. In this case integers are communicated.

The producer now uses the channel on its edge, instead of the two events. The exclamation mark (!)
after the channel name means that the producer is sending over the channel. After the exclamation
mark, the value that the producer sends is given. In this case, the producer sends the identification
number of its current product.

The edges of the consumers have been modified as well. The channel is used with a question mark
(?) after the channel name, indicating that the consumers receive over the channel. The received
value, which is available as the ? variable in the update, is directly added to the nrs list of the
consumer.

By using channels, we no longer need multiple events, and the producer does not need to be
modified if another consumer is added. This makes the model scalable to varying amount of
consumers. Furthermore, the consumers now use the ? variable to obtain the received value, and
no longer need direct access to the variables of the producer. This makes it easier to modify the
producer without having to also modify the consumers.

To conclude this lesson, we’ll extend the example with a second producer:

event int provide;

automaton producer’:
disc int nr = 0;

location:
initial;
edge provide!nr do nr :=nr + 1;
end

automaton producer?2:
disc int nr = 0;

location:
initial;
edge provide!nr do nr :=nr + 1;
end

automaton consumer1:
disc list int nrs;

location:



initial;
edge provide? do nrs := nrs + [?];
end

automaton consumer?:
disc list int nrs;

location:
initial;
edge provide? do nrs := nrs + [?];
end

The producer automaton has been renamed to producer1, and a producer2 has been added. Both
producers independently produce products and provide them to the consumers. Both consumers
can receive products from either producer. At all times, four transitions are possible: producer
communicates with consumer1, producer1 communicates with consumer2, producer2 communicates
with consumer, or producer2 communicates with consumer2.

Note that the producer1 and producer2 automata are identical, as are the consumer1 and consumer?
automata. In the lesson on automaton definition/instantiation, it is shown how this duplication can
be prevented.

2.8.2. Dataless channels

Besides channels that communicate data, it is also possible to use dataless channels. A channel that
does not communicate any data, is declared with the void type. Dataless channels are also called
void channels. When using dataless channels, the sender does not provide a value to send over the
channel. Also, the receiver cannot use the received value (variable ?7) since no data is
communicated.

Dataless channels are used in the same situations as 'normal’ channels, for instance when physical
product flow is modeled. If products don’t have an identification number, and can not be
distinguished based on color or some other property, all products are essentially equal. It is then
sufficient to communicate that a product is being 'transferred'. No further data is needed. While it
is possible to communicate dummy values, dataless channels provide a better solution in such
cases.

Consider again the producer/consumer example from the previous lesson, with one producer and
two consumers, but without identification numbers for the products:

event void provide;

automaton producer:
location:
initial;
edge provide!;
end

automaton consumer1:



location:
initial;
edge provide?;
end

automaton consumer?2:
location:
initial;
edge provide?;
end

The producer still produces products and provides them to either the first or the second consumer.

2.8.3. Combining channel communication with event synchronization

Consider again the producer/consumer example with two producers and two consumers, from a
previous lesson:

event int provide;

automaton producer1:
disc int nr = 0;

location:
initial;
edge provide!nr do nr := nr + 1;
end

automaton producer?2:
disc int nr = 0;

location:
initial;
edge provide!nr do nr :=nr + 1;
end

automaton consumer1:
disc list int nrs;

location:
initial;
edge provide? do nrs := nrs + [?];
end

automaton consumer?:
disc list int nrs;

location:
initial;
edge provide? do nrs := nrs + [?];



end

Now assume we want to restrict communication to allow at most five products in total to be
provided to the consumers. We could adapt both producers, as follows:

automaton producer1:
disc int nr = 0;

location:
initial;
edge provide!nr when nr + producer2.nr < 5 do nr :=nr + 1;
end

automaton producer?2:
disc int nr = 0;

location:
initial;
edge provide!nr when producerl.nr + nr < 5 do nr :=nr + 1;
end

Each producer gets an additional guard condition whether it may provide a product to one of the
consumers. If the total number of products provided by both providers does not exceed five, they
may still provide a product. Having to adapt both producers is less than ideal.

As an alternative solution, we can add an additional automaton, instead of adapting the producers:

automaton controller:
disc int cnt = 0;

location:
initial;
edge provide when cnt < 5 do cnt := cnt + 1;
end

This controller automaton (together with the original producer automata) keeps track of the
number of products provided to consumers, by counting them in variable cnt. It only allows the
provide event when less than five products have been provided. If five or more products have been
provided, it disables the provide event.

In the controller automaton, the provide channel is used as an event rather than a channel. When
one of the producers and one of the consumers together perform a channel communication, the
controller automaton that has the provide event in its alphabet, must synchronize with it. This
allows the controller to impose additional restrictions on the channel communication, allowing or
forbidding it in certain cases. The controller is added as a separate process, which improves
scalability.

In general, every automaton may either send over a channel, receive over a channel, or



synchronize with a channel. An automaton may not take on more than one of these roles, for a
single event. It may however send over one channel, receive over another channel, and
synchronize with yet another one.

Every event transition for a channel requires exactly one automaton that participates as sender,
and exactly one automaton that participates as receiver. Furthermore, all automata that have the
channel in their alphabet, must additionally participate as well, by synchronizing together with the
sender and receiver. Automata that send or receive over a channel, do not have that channel in
their alphabet. Only automata that synchronize with an event or channel have that event or
channel in their alphabet.

Automata that synchronize over a channel can be used to further restrict the allowed channel
communications, as shown in the above example. It is however also possible for the additional
synchronizing automata to monitor (observe) the channel communication.

2.9. Functions

2.9.1. Functions

Functions can be used to compute values from other values. CIF has many built-in functions, called
standard library functions. An example is the size function, which takes a list and returns the
number of elements of the list. Another example is the abs function, which takes an integer or real
number and computes the absolute value of that number.

While many built-in functions are available, they may not always suffice. User-defined functions
can be added to CIF models, to allow custom computations needed by the model. By putting the
calculation in a user-defined function, the calculation can be used in several places, allowing for
reuse. Furthermore, functions allow for more complex computations than would otherwise be
possible.

CIF features two kinds of user-defined functions: internal ones and external ones. Internal user-
defined functions are fully defined within the CIF model. External user-defined functions declare
only a header which indicates the existence of the function, while the actual implementation is
obtained from an external source. The lessons of this category only explain internal user-defined
functions. The language reference documentation gives more information on external user-defined
functions.

2.9.2. Internal user-defined functions

The most commonly used kind of user-defined functions are the internal user-defined functions.
Consider the following CIF specification:

func real mean(list real vs):
int length = size(vs);
int index = 0;
real sum = 0;

while index < length:



sum := sum + vs[index];
index := index + 1;
end
return sum / length;
end

This specification defines a function (keyword func) named mean. After the name of the function,
between the parentheses, the parameters are listed. The parameters are the input values, which the
function can use to compute its result. In this example, the function takes a list of real values as its
only parameter. Parameter name vs can be used in the body of the function to refer to this input
value. Just after the func keyword, the type of the result of the computation is specified. In this case,
the function results in a real typed value. The mean function takes a list of integer values and
produces a single real value as result.

In the body of the function, local variables can be declared. The mean function declares three
variables: length, index, and sum. Local variables of functions are also called function variables, and
they are very similar to discrete variables. The main difference is that they are declared without
the disc keyword. In the example, length is set to the number of elements in list vs. Variables index
and sum are both initialized to 0.

After the local variables (if any), the statements of the body are given. The statements implement
the algorithm, the actual computation of the function. Statements are executed one after another, in
the order they are given. In the mean function, the while statement is executed before the return
statement. The mean function first calculates the sum of the input values, and then returns the mean
value. The details of the statements are discussed in the next lesson.

A function can be called (or applied) on concrete input values, to obtain the computation result for
those specific input values. For instance, consider the following extension to the above CIF
specification:

alg real m = mean([1.5, 3.2, 7.9, 15.8]);

automaton a:
disc real x;

location:
initial;
edge do x := 2 * mean([0.4, 1.5, 6.8]);
end

Algebraic variable m is given the value that results from calling function mean on a single argument,
a list with four values. Each argument of a function call must match with the corresponding
parameter of the function being called. In this case, the list of four real values matches with the vs
parameter of the mean function, which has type list real. Variable m becomes 7.1, as the mean of
those four valuesis 7.1 ((1.5 + 3.2 + 7.9 + 15.8) / 4).

The edge in automaton a assigns a value to variable x. The mean of a list of three values is
calculated, and multiplied by two, to obtain the new value of x. The mean of 0.4, 1.5, and 6.8 is (0.4



+ 1.5 + 6.8) / 3, whichis 2.9. Variable x gets 5.8 (2.9 * 2) as its new value.
Function mean is called in two places in the example, showing reuse of calculations.

Functions in CIF are mathematical functions. That is, the result of a function is the same for the
same input values, and functions have no side effects. Functions can not directly access variables
outside their body. For example, they cannot access discrete, continuous, and algebraic variables.
They can also not use variable time. To use the values of those variables in a function, they have to
be passed in through parameters.

2.9.3. Function statements
This lesson explains the different statements that can be used in internal user-defined functions:

* Assignment statement

¢ Return statement

While statement

If statement

* Break statement

e Continue statement

Assignment statement

Assignments in functions are very similar to assignments to discrete variables. For instance:
X = x + 1;
Besides local variables, it is also allowed to assign new values to the parameters. Changes to

parameters only have effect inside the function itself.

For multi-assignments, the outer parentheses are not needed:

// Multi-assignment on an edge.
edge do (x, y) := (1, 2);

// Multi-assignment in a function.
X, y:=1, 2;

Return statement

The execution of a function ends when a return statement is encountered. The value following the
return statement is the result of the entire function. Consider again the return statement from the



mean function from the previous lesson:

return sum / length;

In this case, the sum of the input values is divided by the number of input elements (variable 1ength)
to obtain the mean of the input values. The mean of the input values is the result of the function.

While statement

The while statements allows for repeated execution of the statements in its body, as long as the
condition of the while loop holds. Consider again the mean function from the previous lesson:

func real mean(list real vs):
int length = size(vs);
int index = 0;
real sum = 0;

while index < length:
sum := sum + vs[index];
index := index + 1;
end
return sum / length;
end

The mean function processes each of its input values, using a while loop. As long as the condition
(index < length) holds, the body of the while is executed over an over. The body consists of two
assignments. The first assignment obtains an input value (vs[index]) and adds it to the sum. The
second statement increases the index, to proceed with the next input value. After the two
assignments have been executed, the condition of the while is evaluated again. If the condition still
holds, the two assignments are executed again, etc. When the condition no longer holds, the while
statement is done, and execution proceeds with the next statement, the return statement.

If statement

In a previous lesson, the if expression is introduced to construct more complex expressions.
Consider the if expression from that previous lesson, but now used within a function:

func int signum(real x):
return if x> 0: 1

elif x < 0: -1
else 0
end;

end



For functions one can also use if statements. This expression can be rewritten into an if statement
as follows:

func int signum(real x):
if x > 0:
return 1;
elif x < 0:
return -1;
else
return 9;
end
end

A difference between an if statement and an if expression is that the if statement can be partial in
the sense that it does not need an else part. Consider again the mean function from above. It does
not correctly handle empty lists. The length of an empty list is 0, so the return statement will cause a
division-by-zero error. We can correctly handle this edge case using an if statement:

func real mean(list real vs):
int length = size(vs);
int index = 0;
real sum = 0;

if length = 0:
return 0;
end

while index < length:
sum := sum + vs[index];
index := index + 1;
end
return sum / length;
end

Break statement

A break statement 'jumps out' of a while statement, continuing with the first statement after the
while. Consider the following CIF specification:

// Get the first 'n' values from 'xs' that are not 'bad'.
func list int first_n(list int xs; int n; int bad):

int index = 0;

int x;

list int result = [];

while index < size(xs):



X := xs[index];
if x != bad:
result := result + [x];
end
if size(result) = n:
break;
end
index := index + 1;
end
return result;
end

// The value of 'y' is [1, 5, 3].
alg list int y = first_n([1, 2, 5, 3, 4, 1, 31, 3, 2);

The first_n function takes a list of integer numbers xs, and returns a list result with the first n
numbers from xs that are not bad. A while loop is used to process each of the numbers in list xs. The
current number is stored in variable x. If the current number is not the same as bad, it is added to
the result. If the result then contains n values, the break statement is used to break out of the while
loop and continue execution at the first statement after the while loop, which is the return
statement. If less than n values are in the result, index is incremented to ensure the next number of
the list is processed in the next iteration of the while loop. The return statement at the end of the
function is used to return the result list, which contains at most n values.

Continue statement

A continue statement 'jumps over' the remaining statements in the body of a while statement, and
continues with the next iteration of that while statement. Consider the following CIF specification:

// Get the values from 'xs' that are greater than 5.
func list int filter_gt5(list int xs):

int index = 0;

int x;

list int result = [];

while index < size(xs):
X := xs[index];
index := index + 1;
if x <= b:
continue;
end
result := result + [x];
end
return result;
end

// The value of 'y' is [8, 7, 6].



alg list int y = filter_gt5([1, 8, 5, 7, 4, 6, 31);

The filter_gt5 function takes a list of integer numbers, and returns a filtered list that only contains
those integer number that are greater than 5. A while loop is used to process each of the numbers in
list xs. The current number is stored in variable x, and index is incremented to ensure the next
number of the list is processed in the next iteration of the while loop. If the current number is not
greater than 5, the remaining statements in the body of the while are skipped, meaning x is not
added to the result. The while loop then continues with the next iteration, for the next number in
xs. If the current number (x) is greater than 5, execution continues after the if statement, and the
number is added to the result. After all numbers in the list have been processed, the filtered result
list is returned to the caller of the function.

2.9.4. Functions as values

Functions can be used as values. By treating them as data, they can be stored in variables, and
passed to other functions. This lesson shows one example of how that can be useful.

Consider the following list of numbers:

alg list real nrs = [0.5, 1.3, 0.1, 2.7, 1.4];

Now assume we wanted to sort these numbers both in increasing and in decreasing order, using a
single sorting function:

alg list real inc
alg list real dec

sort(nrs, cmp_inc); // [0.1, 0.5, 1.3, 1.4, 2.7]
sort(nrs, cmp_dec); // [2.7, 1.4, 1.3, 0.5, 0.1]

Variable inc contains the same numbers as nrs, but sorted in increasing order, while dec contains
them in decreasing order. We use the same sort function in both cases, but with different
comparison functions:

func bool cmp_inc(real a, b):
return a <= b;
end

func bool cmp_dec(real a, b):
return a >= b;
end

Function cmp_inc takes two real numbers and returns true only if the first number is smaller than
the second one (a and b are in increasing order). Function cmp_dec has the same parameters, but
returns true only if the first number is larger than the second one (a and b are in decreasing order).
The sort function is defined as follows:

func Tist real sort(list real xs; func bool (real, real) cmp):



inti=1,3j;
real x;

while i < size(xs):
j = 1;
while j > @ and not cmp(xs[j-1], xs[j]):
// swap x[j-1] and x[j]

x = xs[j-11;
xs[j-11 := xs[jl;
xs[j] = x;
j =3 -1;
end
im=1+1;
end
return xs;

end

The sort function has two parameters. The first parameter is xs, which contains the values to sort.
The second parameter is cmp, the compare function to use to determine whether two numbers are
correctly ordered. The cmp parameter has type func bool (real, real), which means that a function
that has two real parameters and a boolean return value is required. The cmp_inc and cmp_dec
functions satisfy these requirements, and can be used as second argument when the function is
called to determine the values of algebraic variables inc and dec.

The sort function implements a standard insertion sort algorithm. The cmp parameter is used in the
sort function to compare two consecutive values in xs, and swap them if they are not correctly
ordered.

The cmp parameter of the sort function has a function type, allowing compare functions to be
passed to the sort function, as data. This allows the sort function to sort lists of numbers in
different orders, depending on the compare function that is provided.

2.10. Scalable solutions and reuse (2/2)

2.10.1. Automaton definition/instantiation

Parts of a system that are nearly identical, are often modeled as nearly identical automata. Having
to specify them multiple times can be burdensome. It can also hinder scalability, as changes to one
of them usually need to be applied to the others as well. Consider again the producer/consumer
example from the lesson that introduced channels:

event int provide;

automaton producer:
disc int nr = 0;

location:
initial;


https://en.wikipedia.org/wiki/Insertion_sort

edge provide!nr do nr :=nr + 1;
end

automaton consumer1:
disc list int nrs;

location:
initial;
edge provide? do nrs := nrs + [?];
end

automaton consumer?:
disc list int nrs;

location:
initial;
edge provide? do nrs := nrs + [?];
end

The producer provides products either to the first consumer or to the second consumer. The
consumers are modeled using identical automata. Only the names of the consumer1 and consumer?2
automata differ. Ideally, we would have a sort of consumer template, and use that template twice,
once for each of the actual consumers. This can be achieved in CIF using an automaton definition
(the template) and two automaton instantiations (the uses of the template):

event int provide;

automaton producer:
disc int nr = 0;

location:
initial;
edge provide!nr do nr := nr + 1;
end

automaton def Consumer():
disc list int nrs;

location:
initial;
edge provide? do nrs := nrs + [?];
end

consumer1: Consumer();
consumer?2: Consumer();

The Consumer automaton definition is identical to the original consumers, except that it is an
automaton definition rather than an automaton. An automaton definition can be identified by the
def keyword between the automaton keyword and the name of the automaton definition, as well as



by the parentheses after its name. As a convention, names of automaton definitions start with an
upper case letter (Consumer rather than consumer).

An automaton definition by itself is not an automaton. The instantiations of the automaton
definition (consumer1 and consumer2) however, are automata. Before the colon (:), the name of the
instantiation is given. This name is also the name of the actual automaton. After the colon, the
name of the automaton definition that is instantiated is given.

Using an automaton definition, the above example models the behavior of a consumer only once.
Adding a third consumer is as easy as adding another automaton instantiation, which takes only
one line of code (consumer3: Consumer();). Changing the behavior of all consumers only requires
changes to the common automaton definition. Automaton definition/instantiation allows for
scalability and reuse, and also improves maintainability.

Automaton definition/instantiation can be eliminated, by replacing all automaton instantiations by
the automaton definitions that they instantiate, and changing the automaton definition header
(automaton def Consumer():) by an automaton header (automaton consumer1:). If we do that for the
example above, we obtain the original specification from the beginning of this lesson. The two
specifications are functionally equivalent. Automaton instantiation consumer1 is also often referred
to as automaton consumer1, when there is no confusion.

2.10.2. Parametrized automaton definitions

In the previous lesson, automaton definition/instantiation was used to obtain two identical
automata, while only having to specify their behavior once. What we have seen so far, is enough for
exactly identical automata, but not for nearly identical automata. Consider the following two nearly
identical consumers:

automaton consumer1:
disc list int buffer = [];

location:
initial;
edge provide? when size(buffer) < 2 do buffer := buffer + [?];
end

automaton consumer?:
disc list int buffer = [];

location:
initial;
edge provide? when size(buffer) < 3 do buffer := buffer + [?];
end

The consumers can accept products that the producer provides (channel provide). They store the
identification numbers of those products in a buffer. The two consumers are identical except for
the number of products that they can accept: the first consumer can accept two products, the
second producer can accept three products. We can still use automaton definition and instantiation



to model the consumer only once, but we need to parametrize the automaton definition:

automaton def Consumer(alg int capacity):
disc list int buffer = [];

location:
initial;
edge provide? when size(buffer) < capacity do buffer := buffer + [?];
end

consumer1: Consumer(2);
consumer?2: Consumer(3);

The Consumer automaton definition now has a parameter named capacity that indicates how many
identification numbers can be stored in its buffer. The automaton instantiations consumer1 and
consumer? provide an argument (2 and 3 respectively) to match the parameter of Consumer. That is,
the instantiations indicate their capacity. Using parameters, the Consumer automaton definition
models the behavior of both automata consumer1 and consumer?2, even though they have different
capacities.

The details of the different kind of parameters of automaton definitions are explained in the next
lesson.

2.10.3. Automaton definition parameters

In the previous lesson, an automaton definition with parameter was used. The parameter was an
algebraic parameter, which is only one of the different kinds of automaton definition parameters.
This lesson explains each of them:

Algebraic parameters
* Event parameters
» Location parameters

* Automaton parameters

This lesson also explains how to use multiple parameters.

Algebraic parameters

An algebraic parameter is similar to an algebraic variable. Arbitrary values or expressions of
matching type can be provided as arguments in automaton instantiations. For instance, consider
the following partial CIF specification:

event int accept, provide;

automaton def Buffer(alg int capacity):



disc list int buf = [];

location:
initial;
edge accept? when size(buf) < capacity do buf := buf + [?];
edge provide!buf[@] when size(buf) > 0 do buf := buf[1:];
end

buffer1: Buffer(5);

Automaton definition Buffer has an algebraic parameter that indicates the capacity of the buffer.
The buffer can accept something when it has not yet reached its capacity. It can provide something
when the buffer is not empty. Automaton instantiation buffer1 has value 5 as its argument. Value 5
is an integer number, which matches the integer type (int) of the capacity parameter.

Algebraic parameters can be used inside an automaton definition, wherever a value is expected,
e.g. in guards, updates, initial values of discrete variables, and invariants. The expression that is
provided by the instantiation is essentially filled in wherever the parameter is used. The above is
equivalent to:

event int accept, provide;

automaton buffer?:
disc list int buf = [];

location:
initial;
edge accept? when size(buf) < 5 do buf := buf + [?];
edge provide!buf[@] when size(buf) > @ do buf := buf[1:];
end

Event parameters

Event parameters allow different instantiations to synchronize with different events or to
communicate over different channels. For instance, consider the following partial CIF specification:

event int generate, pass_along, exit;

automaton def Buffer(event int accept, provide):
disc int buffer;

location accepting:
initial;

edge accept? do buffer := ? goto providing;

location providing:



edge provide!buffer goto accepting;
end

buffer1: Buffer(generate, pass_along);
buffer2: Buffer(pass_along, exit);

Automaton definition Buffer is parametrized with two channels, one to accept a product into the
one place buffer, and one to provide it to some other part of the system. The first buffer (buffer1)
accepts products via the generate channel, and provides products via the pass_along channel. The
second buffer (buffer2) accepts products via the pass_along channel, and provides products via the
exit channel. The first buffer uses the pass_along channel as its provide channel parameter, and the
second buffer uses that same pass_along channel as its accept channel parameter. The first buffer
thus provides its items to the second buffer.

Event and channel parameters can be used inside an automaton definition, wherever an event or
channel is expected, e.g. on edges and in alphabets if explicitly specified. The event or channel that
is provided by the instantiation is essentially filled in wherever the parameter is used. The above is
equivalent to:

event int generate, pass_along, exit;

automaton buffer?:
disc int buffer;

location accepting:
initial;
edge generate? do buffer := ? goto providing;

location providing:
edge pass_along!buffer goto accepting;
end

automaton buffer2:
disc int buffer;

location accepting:
initial;
edge pass_along? do buffer := ? goto providing;

location providing:
edge exit!buffer goto accepting;
end

Channel parameter usage restrictions

If an event parameter is ac